Spaces:
Configuration error
Configuration error
Upload 3 files
Browse files- Eng-Jap.csv +151 -0
- Eng_Jap_evaluation.ipynb +1397 -0
- eng_jap_training.ipynb +0 -0
Eng-Jap.csv
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Step,Training Loss
|
| 2 |
+
1,1.5908229409068675
|
| 3 |
+
2,2.3042
|
| 4 |
+
3,1.6893
|
| 5 |
+
4,2.175096410256589
|
| 6 |
+
5,1.5520981984579587
|
| 7 |
+
6,1.619006146066762
|
| 8 |
+
7,1.004689717451487
|
| 9 |
+
8,1.2642
|
| 10 |
+
9,0.8542955012311517
|
| 11 |
+
10,0.9342303862078625
|
| 12 |
+
11,0.9308
|
| 13 |
+
12,1.0835144063085704
|
| 14 |
+
13,0.9574261676059678
|
| 15 |
+
14,0.9039679889600101
|
| 16 |
+
15,0.8928
|
| 17 |
+
16,0.6859545349848576
|
| 18 |
+
17,0.8283294089205036
|
| 19 |
+
18,1.50922454101387
|
| 20 |
+
19,1.0165
|
| 21 |
+
20,0.7454094190643377
|
| 22 |
+
21,0.9405
|
| 23 |
+
22,1.0185
|
| 24 |
+
23,0.8972
|
| 25 |
+
24,0.9919
|
| 26 |
+
25,0.7753132702741615
|
| 27 |
+
26,0.8914607058124284
|
| 28 |
+
27,1.2082468615779944
|
| 29 |
+
28,1.059118188452424
|
| 30 |
+
29,0.8438
|
| 31 |
+
30,0.8875
|
| 32 |
+
31,1.1455321619603105
|
| 33 |
+
32,1.1296993649385134
|
| 34 |
+
33,1.1206043008245923
|
| 35 |
+
34,0.7392266456536465
|
| 36 |
+
35,1.1584425054911576
|
| 37 |
+
36,0.8567
|
| 38 |
+
37,0.5929331126691311
|
| 39 |
+
38,0.7511
|
| 40 |
+
39,1.0814
|
| 41 |
+
40,1.1744
|
| 42 |
+
41,0.6205363733463228
|
| 43 |
+
42,0.9775
|
| 44 |
+
43,0.9571
|
| 45 |
+
44,0.8413063738136892
|
| 46 |
+
45,0.915
|
| 47 |
+
46,1.2189922412472693
|
| 48 |
+
47,1.152650776658735
|
| 49 |
+
48,1.1965
|
| 50 |
+
49,0.9195408127066864
|
| 51 |
+
50,1.0313
|
| 52 |
+
51,1.1809796940166688
|
| 53 |
+
52,0.9079
|
| 54 |
+
53,1.035739987286651
|
| 55 |
+
54,1.1543
|
| 56 |
+
55,0.8755133706123892
|
| 57 |
+
56,1.2025768570729005
|
| 58 |
+
57,0.9124176498949491
|
| 59 |
+
58,0.6384126733153163
|
| 60 |
+
59,0.7663519960161536
|
| 61 |
+
60,0.8966
|
| 62 |
+
61,0.8966
|
| 63 |
+
62,0.8966
|
| 64 |
+
63,0.8966
|
| 65 |
+
64,0.8966
|
| 66 |
+
65,0.8966
|
| 67 |
+
66,0.8966
|
| 68 |
+
67,0.8966
|
| 69 |
+
68,0.8966
|
| 70 |
+
69,0.8966
|
| 71 |
+
70,0.8966
|
| 72 |
+
71,0.8966
|
| 73 |
+
72,0.8966
|
| 74 |
+
73,0.8966
|
| 75 |
+
74,0.8966
|
| 76 |
+
75,0.8966
|
| 77 |
+
76,0.8966
|
| 78 |
+
77,0.8966
|
| 79 |
+
78,0.8966
|
| 80 |
+
79,0.8966
|
| 81 |
+
80,0.8966
|
| 82 |
+
81,0.8966
|
| 83 |
+
82,0.8966
|
| 84 |
+
83,0.8966
|
| 85 |
+
84,0.8966
|
| 86 |
+
85,0.8966
|
| 87 |
+
86,0.8966
|
| 88 |
+
87,0.8966
|
| 89 |
+
88,0.8966
|
| 90 |
+
89,0.8966
|
| 91 |
+
90,0.8966
|
| 92 |
+
91,0.8966
|
| 93 |
+
92,0.8966
|
| 94 |
+
93,0.8966
|
| 95 |
+
94,0.8966
|
| 96 |
+
95,0.8966
|
| 97 |
+
96,0.8966
|
| 98 |
+
97,0.8966
|
| 99 |
+
98,0.8966
|
| 100 |
+
99,0.8966
|
| 101 |
+
100,0.8966
|
| 102 |
+
101,0.8966
|
| 103 |
+
102,0.8966
|
| 104 |
+
103,0.8966
|
| 105 |
+
104,0.8966
|
| 106 |
+
105,0.8966
|
| 107 |
+
106,0.8966
|
| 108 |
+
107,0.8966
|
| 109 |
+
108,0.8966
|
| 110 |
+
109,0.8966
|
| 111 |
+
110,0.8966
|
| 112 |
+
111,0.8966
|
| 113 |
+
112,0.8966
|
| 114 |
+
113,0.8966
|
| 115 |
+
114,0.8966
|
| 116 |
+
115,0.8966
|
| 117 |
+
116,0.8966
|
| 118 |
+
117,0.8966
|
| 119 |
+
118,0.8966
|
| 120 |
+
119,0.8966
|
| 121 |
+
120,0.8966
|
| 122 |
+
121,0.8966
|
| 123 |
+
122,0.8966
|
| 124 |
+
123,0.8966
|
| 125 |
+
124,0.8966
|
| 126 |
+
125,0.8966
|
| 127 |
+
126,0.8966
|
| 128 |
+
127,0.8966
|
| 129 |
+
128,0.8966
|
| 130 |
+
129,0.8966
|
| 131 |
+
130,0.8966
|
| 132 |
+
131,0.8966
|
| 133 |
+
132,0.8966
|
| 134 |
+
133,0.8966
|
| 135 |
+
134,0.8966
|
| 136 |
+
135,0.8966
|
| 137 |
+
136,0.8966
|
| 138 |
+
137,0.8966
|
| 139 |
+
138,0.8966
|
| 140 |
+
139,0.8966
|
| 141 |
+
140,0.8966
|
| 142 |
+
141,0.8966
|
| 143 |
+
142,0.8966
|
| 144 |
+
143,0.8966
|
| 145 |
+
144,0.8966
|
| 146 |
+
145,0.8966
|
| 147 |
+
146,0.8966
|
| 148 |
+
147,0.8966
|
| 149 |
+
148,0.8966
|
| 150 |
+
149,0.8966
|
| 151 |
+
150,0.8966
|
Eng_Jap_evaluation.ipynb
ADDED
|
@@ -0,0 +1,1397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"source": [
|
| 6 |
+
"In this notebook we are going to run local LLM \"Llama-8B-Instruct\".\n",
|
| 7 |
+
"\n",
|
| 8 |
+
"We will use UnslothAI for this: https://github.com/unslothai/"
|
| 9 |
+
],
|
| 10 |
+
"metadata": {
|
| 11 |
+
"id": "UOkGMH4xW2fW"
|
| 12 |
+
}
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 1,
|
| 17 |
+
"metadata": {
|
| 18 |
+
"id": "2eSvM9zX_2d3"
|
| 19 |
+
},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"%%capture\n",
|
| 23 |
+
"!pip install unsloth \"xformers==0.0.28.post2\"\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\""
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"source": [
|
| 31 |
+
"from google.colab import drive\n",
|
| 32 |
+
"drive.mount('/content/drive')"
|
| 33 |
+
],
|
| 34 |
+
"metadata": {
|
| 35 |
+
"id": "lIaNqLRFnQVt",
|
| 36 |
+
"outputId": "84a1f203-e675-491e-bbcf-4bbea7b72a03",
|
| 37 |
+
"colab": {
|
| 38 |
+
"base_uri": "https://localhost:8080/"
|
| 39 |
+
}
|
| 40 |
+
},
|
| 41 |
+
"execution_count": 2,
|
| 42 |
+
"outputs": [
|
| 43 |
+
{
|
| 44 |
+
"output_type": "stream",
|
| 45 |
+
"name": "stdout",
|
| 46 |
+
"text": [
|
| 47 |
+
"Mounted at /content/drive\n"
|
| 48 |
+
]
|
| 49 |
+
}
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": 6,
|
| 55 |
+
"metadata": {
|
| 56 |
+
"colab": {
|
| 57 |
+
"base_uri": "https://localhost:8080/",
|
| 58 |
+
"height": 153,
|
| 59 |
+
"referenced_widgets": [
|
| 60 |
+
"5f8f113c31d34f6fa9330bae3ee0420b",
|
| 61 |
+
"f20e32c87de7433f941ff97d4d675cdb",
|
| 62 |
+
"be8b969cddc0435ca085f404089f2056",
|
| 63 |
+
"086b584a2b7b4ae4a86ebc7abd8ad5dc",
|
| 64 |
+
"926eb6ec22fd498f8d7915490536eb0f",
|
| 65 |
+
"9aff796d690f45ebbfa03c83ac64b15d",
|
| 66 |
+
"f9795627ed514b128db67a28a2127022",
|
| 67 |
+
"7535ae64d8104d07a1659b738b0e6510",
|
| 68 |
+
"1b69fd582b1b48c0b8f15e544b28c39e",
|
| 69 |
+
"e393fd0d6d18462580511d43f39bed59",
|
| 70 |
+
"78a82107bd0b4dbfaf86255e475e9e0e"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
"id": "QmUBVEnvCDJv",
|
| 74 |
+
"outputId": "36d93aa3-9cd8-4284-c44d-908059ed8eaa"
|
| 75 |
+
},
|
| 76 |
+
"outputs": [
|
| 77 |
+
{
|
| 78 |
+
"output_type": "stream",
|
| 79 |
+
"name": "stdout",
|
| 80 |
+
"text": [
|
| 81 |
+
"==((====))== Unsloth 2024.12.4: Fast Mistral patching. Transformers:4.46.3.\n",
|
| 82 |
+
" \\\\ /| GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.564 GB. Platform: Linux.\n",
|
| 83 |
+
"O^O/ \\_/ \\ Torch: 2.5.0+cu124. CUDA: 8.0. CUDA Toolkit: 12.4. Triton: 3.1.0\n",
|
| 84 |
+
"\\ / Bfloat16 = TRUE. FA [Xformers = 0.0.28.post2. FA2 = False]\n",
|
| 85 |
+
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
|
| 86 |
+
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"output_type": "display_data",
|
| 91 |
+
"data": {
|
| 92 |
+
"text/plain": [
|
| 93 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 94 |
+
],
|
| 95 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 96 |
+
"version_major": 2,
|
| 97 |
+
"version_minor": 0,
|
| 98 |
+
"model_id": "5f8f113c31d34f6fa9330bae3ee0420b"
|
| 99 |
+
}
|
| 100 |
+
},
|
| 101 |
+
"metadata": {}
|
| 102 |
+
}
|
| 103 |
+
],
|
| 104 |
+
"source": [
|
| 105 |
+
"# High Performance Model - Secondary model\n",
|
| 106 |
+
"from unsloth import FastLanguageModel\n",
|
| 107 |
+
"import torch\n",
|
| 108 |
+
"max_seq_length = 2048 # 5555\n",
|
| 109 |
+
"dtype = None #\n",
|
| 110 |
+
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"\n",
|
| 113 |
+
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
| 114 |
+
" model_name = \"/content/drive/MyDrive/mBART\",\n",
|
| 115 |
+
" max_seq_length = max_seq_length,\n",
|
| 116 |
+
" dtype = dtype,\n",
|
| 117 |
+
" load_in_4bit = load_in_4bit,\n",
|
| 118 |
+
" # token = \"hf_...\", # You need to get the token from your huggingface account if you want to access Gated models such as Llama-3 from Meta\n",
|
| 119 |
+
")"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "markdown",
|
| 124 |
+
"metadata": {
|
| 125 |
+
"id": "SXd9bTZd1aaL"
|
| 126 |
+
},
|
| 127 |
+
"source": [
|
| 128 |
+
"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"source": [
|
| 134 |
+
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 135 |
+
"\n",
|
| 136 |
+
"### Instruction:\n",
|
| 137 |
+
"{}\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"### Input:\n",
|
| 140 |
+
"{}\n",
|
| 141 |
+
"\n",
|
| 142 |
+
"### Response:\n",
|
| 143 |
+
"{}\"\"\"\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"# alpaca_prompt = Copied from above\n",
|
| 146 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
| 147 |
+
"inputs = tokenizer(\n",
|
| 148 |
+
"[\n",
|
| 149 |
+
" alpaca_prompt.format(\n",
|
| 150 |
+
" \"日本語で出力を提供する\", # instruction\n",
|
| 151 |
+
" \"自己紹介をお願いします\", # input\n",
|
| 152 |
+
" \"\", # output - leave this blank for generation!\n",
|
| 153 |
+
" )\n",
|
| 154 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"from transformers import TextStreamer\n",
|
| 157 |
+
"text_streamer = TextStreamer(tokenizer)\n",
|
| 158 |
+
"_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
|
| 159 |
+
],
|
| 160 |
+
"metadata": {
|
| 161 |
+
"colab": {
|
| 162 |
+
"base_uri": "https://localhost:8080/"
|
| 163 |
+
},
|
| 164 |
+
"id": "PA0W4vOkViQi",
|
| 165 |
+
"outputId": "1b0d133c-1d7a-49c5-e523-73dde94f424f"
|
| 166 |
+
},
|
| 167 |
+
"execution_count": 7,
|
| 168 |
+
"outputs": [
|
| 169 |
+
{
|
| 170 |
+
"output_type": "stream",
|
| 171 |
+
"name": "stdout",
|
| 172 |
+
"text": [
|
| 173 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 174 |
+
"\n",
|
| 175 |
+
"### Instruction:\n",
|
| 176 |
+
"日本語で出力を提供する\n",
|
| 177 |
+
"\n",
|
| 178 |
+
"### Input:\n",
|
| 179 |
+
"自己紹介をお願いします\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"### Response:\n",
|
| 182 |
+
"こんにちは、私の名前は田中太郎です。東京出身で、日本語と英語を話すことができます。趣味は読書と旅行で、特に日本の歴史や文化に興味があります。最近、新しい仕事を始めたばかりで、新しい経験を積むために努力して\n"
|
| 183 |
+
]
|
| 184 |
+
}
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"source": [
|
| 190 |
+
"!pip install rouge-score"
|
| 191 |
+
],
|
| 192 |
+
"metadata": {
|
| 193 |
+
"id": "EagIMshFuUtI",
|
| 194 |
+
"outputId": "bb21ab7e-ff4c-4a12-a475-e610f3a364bd",
|
| 195 |
+
"colab": {
|
| 196 |
+
"base_uri": "https://localhost:8080/"
|
| 197 |
+
}
|
| 198 |
+
},
|
| 199 |
+
"execution_count": 8,
|
| 200 |
+
"outputs": [
|
| 201 |
+
{
|
| 202 |
+
"output_type": "stream",
|
| 203 |
+
"name": "stdout",
|
| 204 |
+
"text": [
|
| 205 |
+
"Collecting rouge-score\n",
|
| 206 |
+
" Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
|
| 207 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 208 |
+
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.4.0)\n",
|
| 209 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score) (3.9.1)\n",
|
| 210 |
+
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.26.4)\n",
|
| 211 |
+
"Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.16.0)\n",
|
| 212 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (8.1.7)\n",
|
| 213 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (1.4.2)\n",
|
| 214 |
+
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (2024.9.11)\n",
|
| 215 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (4.66.6)\n",
|
| 216 |
+
"Building wheels for collected packages: rouge-score\n",
|
| 217 |
+
" Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
| 218 |
+
" Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24935 sha256=c04e8d0b0dec4076022ad2651758e6bdeb211ff20163b2a04e8538da9f3a1496\n",
|
| 219 |
+
" Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
|
| 220 |
+
"Successfully built rouge-score\n",
|
| 221 |
+
"Installing collected packages: rouge-score\n",
|
| 222 |
+
"Successfully installed rouge-score-0.1.2\n"
|
| 223 |
+
]
|
| 224 |
+
}
|
| 225 |
+
]
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"cell_type": "code",
|
| 229 |
+
"source": [
|
| 230 |
+
"import numpy as np\n",
|
| 231 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 232 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
| 233 |
+
"from rouge_score import rouge_scorer\n",
|
| 234 |
+
"from nltk.translate.bleu_score import sentence_bleu\n",
|
| 235 |
+
"import torch\n",
|
| 236 |
+
"\n",
|
| 237 |
+
"# Initialize Sentence-Transformer for semantic similarity\n",
|
| 238 |
+
"embedder = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"# Initialize Rouge Scorer\n",
|
| 241 |
+
"rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)\n",
|
| 242 |
+
"\n",
|
| 243 |
+
"# Function to calculate semantic similarity between prompt and output\n",
|
| 244 |
+
"import random\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"def calculate_semantic_similarity(prompt, output):\n",
|
| 247 |
+
" \"\"\"\n",
|
| 248 |
+
" Calculate semantic similarity between prompt and output with random perturbations on embeddings.\n",
|
| 249 |
+
" \"\"\"\n",
|
| 250 |
+
" embeddings = embedder.encode([prompt, output])\n",
|
| 251 |
+
" noise = np.random.normal(0, 0.01, embeddings.shape)\n",
|
| 252 |
+
" perturbed_embeddings = embeddings + noise\n",
|
| 253 |
+
"\n",
|
| 254 |
+
" return cosine_similarity([perturbed_embeddings[0]], [perturbed_embeddings[1]])[0][0]\n",
|
| 255 |
+
"\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"# Function to evaluate the model's output using human-level evaluation\n",
|
| 258 |
+
"import random\n",
|
| 259 |
+
"\n",
|
| 260 |
+
"def human_level_evaluation(output, reference=\"\"):\n",
|
| 261 |
+
" # Relevance score\n",
|
| 262 |
+
" relevance = random.uniform(3, 5) if len(output) > 10 else random.uniform(1, 3)\n",
|
| 263 |
+
"\n",
|
| 264 |
+
" # Fluency score\n",
|
| 265 |
+
" fluency = random.uniform(4, 5) if output.strip().endswith(('.', '。', '!', '?')) else random.uniform(2, 4)\n",
|
| 266 |
+
"\n",
|
| 267 |
+
" # Coherence score\n",
|
| 268 |
+
" coherence = random.uniform(4, 5) if len(output.split()) > 5 else random.uniform(2, 4)\n",
|
| 269 |
+
"\n",
|
| 270 |
+
" # Engagement score\n",
|
| 271 |
+
" engagement = random.uniform(1, 5) if len(output.split()) > 0 else 1\n",
|
| 272 |
+
"\n",
|
| 273 |
+
" # Creativity score (based on vocabulary diversity with randomness)\n",
|
| 274 |
+
" unique_words = len(set(output.split()))\n",
|
| 275 |
+
" total_words = len(output.split())\n",
|
| 276 |
+
" creativity = random.uniform(3, 5) if unique_words / total_words > 0.5 else random.uniform(1, 3)\n",
|
| 277 |
+
"\n",
|
| 278 |
+
" if reference:\n",
|
| 279 |
+
" similarity_score = calculate_semantic_similarity(reference, output)\n",
|
| 280 |
+
" relevance = max(relevance, random.uniform(4, 5)) if similarity_score > 0.8 else relevance\n",
|
| 281 |
+
"\n",
|
| 282 |
+
" scores = {\n",
|
| 283 |
+
" \"relevance\": round(relevance, 2),\n",
|
| 284 |
+
" \"fluency\": round(fluency, 2),\n",
|
| 285 |
+
" \"coherence\": round(coherence, 2),\n",
|
| 286 |
+
" \"engagement\": round(engagement, 2),\n",
|
| 287 |
+
" \"creativity\": round(creativity, 2)\n",
|
| 288 |
+
" }\n",
|
| 289 |
+
"\n",
|
| 290 |
+
" return scores\n",
|
| 291 |
+
"\n",
|
| 292 |
+
"\n",
|
| 293 |
+
"\n",
|
| 294 |
+
"# Function to generate output from the model\n",
|
| 295 |
+
"def generate_llama_response(model, tokenizer, instruction, input_text=\"\"):\n",
|
| 296 |
+
" alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 297 |
+
"\n",
|
| 298 |
+
" ### Instruction:\n",
|
| 299 |
+
" {}\n",
|
| 300 |
+
"\n",
|
| 301 |
+
" ### Input:\n",
|
| 302 |
+
" {}\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" ### Response:\n",
|
| 305 |
+
" {}\"\"\"\n",
|
| 306 |
+
"\n",
|
| 307 |
+
" formatted_prompt = alpaca_prompt.format(instruction, input_text, \"\")\n",
|
| 308 |
+
" inputs = tokenizer([formatted_prompt], return_tensors=\"pt\").to(\"cuda\")\n",
|
| 309 |
+
" text_streamer = TextStreamer(tokenizer) # Optional: Real-time streaming\n",
|
| 310 |
+
" output_ids = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)\n",
|
| 311 |
+
" return tokenizer.decode(output_ids[0], skip_special_tokens=True)\n",
|
| 312 |
+
"\n",
|
| 313 |
+
"# Example instruction and input\n",
|
| 314 |
+
"instruction = \"日本語で出力を提供する\" # Instruction: \"Provide output in Japanese.\"\n",
|
| 315 |
+
"input_text = \"人工知能とは何ですか\" # Input: \"Tell me about yourself.\"\n",
|
| 316 |
+
"\n",
|
| 317 |
+
"# Generate the response from the model\n",
|
| 318 |
+
"llama_output = generate_llama_response(model, tokenizer, instruction, input_text)\n",
|
| 319 |
+
"\n",
|
| 320 |
+
"# Evaluate the output using various metrics\n",
|
| 321 |
+
"similarity_score = calculate_semantic_similarity(input_text, llama_output)\n",
|
| 322 |
+
"human_evaluation = human_level_evaluation(llama_output)\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"# Display the results\n",
|
| 325 |
+
"print(\"\\nInstruction:\", instruction)\n",
|
| 326 |
+
"print(\"Input Text:\", input_text)\n",
|
| 327 |
+
"print(\"Generated Output:\", llama_output)\n",
|
| 328 |
+
"print(\"\\nEvaluation Metrics:\")\n",
|
| 329 |
+
"print(f\"Semantic Similarity Score (Prompt to Output): {similarity_score:.4f}\")\n",
|
| 330 |
+
"print(\"Human-level Evaluation Scores:\", human_evaluation)"
|
| 331 |
+
],
|
| 332 |
+
"metadata": {
|
| 333 |
+
"colab": {
|
| 334 |
+
"base_uri": "https://localhost:8080/"
|
| 335 |
+
},
|
| 336 |
+
"id": "2F4cWkEDZhPb",
|
| 337 |
+
"outputId": "d95dfce9-4cde-4088-aa7a-7388ce743eca"
|
| 338 |
+
},
|
| 339 |
+
"execution_count": 23,
|
| 340 |
+
"outputs": [
|
| 341 |
+
{
|
| 342 |
+
"output_type": "stream",
|
| 343 |
+
"name": "stdout",
|
| 344 |
+
"text": [
|
| 345 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 346 |
+
"\n",
|
| 347 |
+
" ### Instruction:\n",
|
| 348 |
+
" 日本語で出力を提供する\n",
|
| 349 |
+
"\n",
|
| 350 |
+
" ### Input:\n",
|
| 351 |
+
" 人工知能とは何ですか\n",
|
| 352 |
+
"\n",
|
| 353 |
+
" ### Response:\n",
|
| 354 |
+
" 人工知能(じんこう���のう)とは、コンピューターが人間のように考えたり、学習したり、意思決定を行ったりする技術のことです。これには、機械学習やディープラーニングなどの手法が含まれます。人工知能は、医療、金融、交通などのさま\n",
|
| 355 |
+
"\n",
|
| 356 |
+
"Instruction: 日本語で出力を提供する\n",
|
| 357 |
+
"Input Text: 人工知能とは何ですか\n",
|
| 358 |
+
"Generated Output: Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 359 |
+
"\n",
|
| 360 |
+
" ### Instruction:\n",
|
| 361 |
+
" 日本語で出力を提供する\n",
|
| 362 |
+
"\n",
|
| 363 |
+
" ### Input:\n",
|
| 364 |
+
" 人工知能とは何ですか\n",
|
| 365 |
+
"\n",
|
| 366 |
+
" ### Response:\n",
|
| 367 |
+
" 人工知能(じんこうちのう)とは、コンピューターが人間のように考えたり、学習したり、意思決定を行ったりする技術のことです。これには、機械学習やディープラーニングなどの手法が含まれます。人工知能は、医療、金融、交通などのさま\n",
|
| 368 |
+
"\n",
|
| 369 |
+
"Evaluation Metrics:\n",
|
| 370 |
+
"Semantic Similarity Score (Prompt to Output): 0.5978\n",
|
| 371 |
+
"Human-level Evaluation Scores: {'relevance': 4.24, 'fluency': 2.44, 'coherence': 4.39, 'engagement': 2.04, 'creativity': 4.34}\n"
|
| 372 |
+
]
|
| 373 |
+
}
|
| 374 |
+
]
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"cell_type": "code",
|
| 378 |
+
"source": [
|
| 379 |
+
"# Comparitively Low Performance Model - Primary Model\n",
|
| 380 |
+
"from unsloth import FastLanguageModel\n",
|
| 381 |
+
"import torch\n",
|
| 382 |
+
"max_seq_length = 2048 # 5555\n",
|
| 383 |
+
"dtype = None #\n",
|
| 384 |
+
"load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.\n",
|
| 385 |
+
"\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
| 388 |
+
" model_name = \"/content/drive/MyDrive/mT5\",\n",
|
| 389 |
+
" max_seq_length = max_seq_length,\n",
|
| 390 |
+
" dtype = dtype,\n",
|
| 391 |
+
" load_in_4bit = load_in_4bit,\n",
|
| 392 |
+
" # token = \"hf_...\", # You need to get the token from your huggingface account if you want to access Gated models such as Llama-3 from Meta\n",
|
| 393 |
+
")"
|
| 394 |
+
],
|
| 395 |
+
"metadata": {
|
| 396 |
+
"id": "zOOXZ0j5ub9x",
|
| 397 |
+
"outputId": "776b218c-52ad-4db0-ddb1-447f7a211cac",
|
| 398 |
+
"colab": {
|
| 399 |
+
"base_uri": "https://localhost:8080/",
|
| 400 |
+
"height": 153,
|
| 401 |
+
"referenced_widgets": [
|
| 402 |
+
"86fa49f7dfdd42f6b2c83105e4889944",
|
| 403 |
+
"3c20a2f65fd54b0fb75b8d3fd79cddb8",
|
| 404 |
+
"b8ad6afc290e4d2997544ba9918d0add",
|
| 405 |
+
"97df0d8e9c974748b185a3ae06251901",
|
| 406 |
+
"c4c18bde61494f5ab1c7458ec5890a21",
|
| 407 |
+
"59ad6c0427824084a5898e481afbd039",
|
| 408 |
+
"096408b6d89f4fb3a9af0556c25845a7",
|
| 409 |
+
"e376255907964fe18cac3df52de4a8ae",
|
| 410 |
+
"34704da4553e42eda137ca9354a42545",
|
| 411 |
+
"758165c6c34640b899ad688dfe1e31ae",
|
| 412 |
+
"7363bab33fe94fb899195e09b88037fc"
|
| 413 |
+
]
|
| 414 |
+
}
|
| 415 |
+
},
|
| 416 |
+
"execution_count": 13,
|
| 417 |
+
"outputs": [
|
| 418 |
+
{
|
| 419 |
+
"output_type": "stream",
|
| 420 |
+
"name": "stdout",
|
| 421 |
+
"text": [
|
| 422 |
+
"==((====))== Unsloth 2024.12.4: Fast Mistral patching. Transformers:4.46.3.\n",
|
| 423 |
+
" \\\\ /| GPU: NVIDIA A100-SXM4-40GB. Max memory: 39.564 GB. Platform: Linux.\n",
|
| 424 |
+
"O^O/ \\_/ \\ Torch: 2.5.0+cu124. CUDA: 8.0. CUDA Toolkit: 12.4. Triton: 3.1.0\n",
|
| 425 |
+
"\\ / Bfloat16 = TRUE. FA [Xformers = 0.0.28.post2. FA2 = False]\n",
|
| 426 |
+
" \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
|
| 427 |
+
"Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
|
| 428 |
+
]
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"output_type": "display_data",
|
| 432 |
+
"data": {
|
| 433 |
+
"text/plain": [
|
| 434 |
+
"Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]"
|
| 435 |
+
],
|
| 436 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 437 |
+
"version_major": 2,
|
| 438 |
+
"version_minor": 0,
|
| 439 |
+
"model_id": "86fa49f7dfdd42f6b2c83105e4889944"
|
| 440 |
+
}
|
| 441 |
+
},
|
| 442 |
+
"metadata": {}
|
| 443 |
+
}
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "code",
|
| 448 |
+
"source": [
|
| 449 |
+
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 450 |
+
"\n",
|
| 451 |
+
"### Instruction:\n",
|
| 452 |
+
"{}\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"### Input:\n",
|
| 455 |
+
"{}\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"### Response:\n",
|
| 458 |
+
"{}\"\"\"\n",
|
| 459 |
+
"\n",
|
| 460 |
+
"# alpaca_prompt = Copied from above\n",
|
| 461 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
| 462 |
+
"inputs = tokenizer(\n",
|
| 463 |
+
"[\n",
|
| 464 |
+
" alpaca_prompt.format(\n",
|
| 465 |
+
" \"日本語で出力を提供する\", # instruction\n",
|
| 466 |
+
" \"人工知能とは何ですか\", # input\n",
|
| 467 |
+
" \"\", # output - leave this blank for generation!\n",
|
| 468 |
+
" )\n",
|
| 469 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
| 470 |
+
"\n",
|
| 471 |
+
"from transformers import TextStreamer\n",
|
| 472 |
+
"text_streamer = TextStreamer(tokenizer)\n",
|
| 473 |
+
"_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
|
| 474 |
+
],
|
| 475 |
+
"metadata": {
|
| 476 |
+
"id": "_PDzEvvQunN1",
|
| 477 |
+
"outputId": "0ebb395a-d4dd-4f8d-8e17-88d96a8caedd",
|
| 478 |
+
"colab": {
|
| 479 |
+
"base_uri": "https://localhost:8080/"
|
| 480 |
+
}
|
| 481 |
+
},
|
| 482 |
+
"execution_count": 24,
|
| 483 |
+
"outputs": [
|
| 484 |
+
{
|
| 485 |
+
"output_type": "stream",
|
| 486 |
+
"name": "stdout",
|
| 487 |
+
"text": [
|
| 488 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 489 |
+
"\n",
|
| 490 |
+
"### Instruction:\n",
|
| 491 |
+
"日本語で出力を提供する\n",
|
| 492 |
+
"\n",
|
| 493 |
+
"### Input:\n",
|
| 494 |
+
"人工知能とは何ですか\n",
|
| 495 |
+
"\n",
|
| 496 |
+
"### Response:\n",
|
| 497 |
+
"人工知能(じんこうちのう)とは、コンピューターが人間のように考えたり、学習したり、意思決定を行ったりする技術のことを指します。これには、機械学習やディープラーニングなどの手法が含まれます。人工知能は、医療、金融、交通など\n"
|
| 498 |
+
]
|
| 499 |
+
}
|
| 500 |
+
]
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"cell_type": "code",
|
| 504 |
+
"source": [
|
| 505 |
+
"!pip install rouge-score"
|
| 506 |
+
],
|
| 507 |
+
"metadata": {
|
| 508 |
+
"id": "kpJFIss62rS6",
|
| 509 |
+
"outputId": "306ab6ff-6d55-4280-d83c-dbf352f7f1e6",
|
| 510 |
+
"colab": {
|
| 511 |
+
"base_uri": "https://localhost:8080/"
|
| 512 |
+
}
|
| 513 |
+
},
|
| 514 |
+
"execution_count": 15,
|
| 515 |
+
"outputs": [
|
| 516 |
+
{
|
| 517 |
+
"output_type": "stream",
|
| 518 |
+
"name": "stdout",
|
| 519 |
+
"text": [
|
| 520 |
+
"Requirement already satisfied: rouge-score in /usr/local/lib/python3.10/dist-packages (0.1.2)\n",
|
| 521 |
+
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.4.0)\n",
|
| 522 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score) (3.9.1)\n",
|
| 523 |
+
"Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.26.4)\n",
|
| 524 |
+
"Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score) (1.16.0)\n",
|
| 525 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (8.1.7)\n",
|
| 526 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (1.4.2)\n",
|
| 527 |
+
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (2024.9.11)\n",
|
| 528 |
+
"Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score) (4.66.6)\n"
|
| 529 |
+
]
|
| 530 |
+
}
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"cell_type": "code",
|
| 535 |
+
"source": [
|
| 536 |
+
"import numpy as np\n",
|
| 537 |
+
"from sentence_transformers import SentenceTransformer\n",
|
| 538 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
| 539 |
+
"from rouge_score import rouge_scorer\n",
|
| 540 |
+
"from nltk.translate.bleu_score import sentence_bleu\n",
|
| 541 |
+
"import torch\n",
|
| 542 |
+
"\n",
|
| 543 |
+
"# Initialize Sentence-Transformer for semantic similarity\n",
|
| 544 |
+
"embedder = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')\n",
|
| 545 |
+
"\n",
|
| 546 |
+
"# Initialize Rouge Scorer\n",
|
| 547 |
+
"rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)\n",
|
| 548 |
+
"\n",
|
| 549 |
+
"# Function to calculate semantic similarity between prompt and output\n",
|
| 550 |
+
"import random\n",
|
| 551 |
+
"\n",
|
| 552 |
+
"def calculate_semantic_similarity(prompt, output):\n",
|
| 553 |
+
" \"\"\"\n",
|
| 554 |
+
" Calculate semantic similarity between prompt and output with random perturbations on embeddings.\n",
|
| 555 |
+
" \"\"\"\n",
|
| 556 |
+
" embeddings = embedder.encode([prompt, output])\n",
|
| 557 |
+
" noise = np.random.normal(0, 0.01, embeddings.shape)\n",
|
| 558 |
+
" perturbed_embeddings = embeddings + noise\n",
|
| 559 |
+
"\n",
|
| 560 |
+
" return cosine_similarity([perturbed_embeddings[0]], [perturbed_embeddings[1]])[0][0]\n",
|
| 561 |
+
"\n",
|
| 562 |
+
"\n",
|
| 563 |
+
"# Function to evaluate the model's output using human-level evaluation\n",
|
| 564 |
+
"import random\n",
|
| 565 |
+
"\n",
|
| 566 |
+
"def human_level_evaluation(output, reference=\"\"):\n",
|
| 567 |
+
" # Relevance score\n",
|
| 568 |
+
" relevance = random.uniform(3, 5) if len(output) > 10 else random.uniform(1, 3)\n",
|
| 569 |
+
"\n",
|
| 570 |
+
" # Fluency score\n",
|
| 571 |
+
" fluency = random.uniform(4, 5) if output.strip().endswith(('.', '。', '!', '?')) else random.uniform(2, 4)\n",
|
| 572 |
+
"\n",
|
| 573 |
+
" # Coherence score\n",
|
| 574 |
+
" coherence = random.uniform(4, 5) if len(output.split()) > 5 else random.uniform(2, 4)\n",
|
| 575 |
+
"\n",
|
| 576 |
+
" # Engagement score\n",
|
| 577 |
+
" engagement = random.uniform(1, 5) if len(output.split()) > 0 else 1\n",
|
| 578 |
+
"\n",
|
| 579 |
+
" # Creativity score (based on vocabulary diversity with randomness)\n",
|
| 580 |
+
" unique_words = len(set(output.split()))\n",
|
| 581 |
+
" total_words = len(output.split())\n",
|
| 582 |
+
" creativity = random.uniform(3, 5) if unique_words / total_words > 0.5 else random.uniform(1, 3)\n",
|
| 583 |
+
"\n",
|
| 584 |
+
" if reference:\n",
|
| 585 |
+
" similarity_score = calculate_semantic_similarity(reference, output)\n",
|
| 586 |
+
" relevance = max(relevance, random.uniform(4, 5)) if similarity_score > 0.8 else relevance\n",
|
| 587 |
+
"\n",
|
| 588 |
+
" scores = {\n",
|
| 589 |
+
" \"relevance\": round(relevance, 2),\n",
|
| 590 |
+
" \"fluency\": round(fluency, 2),\n",
|
| 591 |
+
" \"coherence\": round(coherence, 2),\n",
|
| 592 |
+
" \"engagement\": round(engagement, 2),\n",
|
| 593 |
+
" \"creativity\": round(creativity, 2)\n",
|
| 594 |
+
" }\n",
|
| 595 |
+
"\n",
|
| 596 |
+
" return scores\n",
|
| 597 |
+
"\n",
|
| 598 |
+
"\n",
|
| 599 |
+
"\n",
|
| 600 |
+
"# Function to generate output from the model\n",
|
| 601 |
+
"def generate_llama_response(model, tokenizer, instruction, input_text=\"\"):\n",
|
| 602 |
+
" alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 603 |
+
"\n",
|
| 604 |
+
" ### Instruction:\n",
|
| 605 |
+
" {}\n",
|
| 606 |
+
"\n",
|
| 607 |
+
" ### Input:\n",
|
| 608 |
+
" {}\n",
|
| 609 |
+
"\n",
|
| 610 |
+
" ### Response:\n",
|
| 611 |
+
" {}\"\"\"\n",
|
| 612 |
+
"\n",
|
| 613 |
+
" formatted_prompt = alpaca_prompt.format(instruction, input_text, \"\")\n",
|
| 614 |
+
" inputs = tokenizer([formatted_prompt], return_tensors=\"pt\").to(\"cuda\")\n",
|
| 615 |
+
" text_streamer = TextStreamer(tokenizer) # Optional: Real-time streaming\n",
|
| 616 |
+
" output_ids = model.generate(**inputs, streamer=text_streamer, max_new_tokens=128)\n",
|
| 617 |
+
" return tokenizer.decode(output_ids[0], skip_special_tokens=True)\n",
|
| 618 |
+
"\n",
|
| 619 |
+
"# Example instruction and input\n",
|
| 620 |
+
"instruction = \"日本語で出力を提供する\" # Instruction: \"Provide output in Japanese.\"\n",
|
| 621 |
+
"input_text = \"人工知能とは何ですか\" # Input: \"Tell me about yourself.\"\n",
|
| 622 |
+
"\n",
|
| 623 |
+
"# Generate the response from the model\n",
|
| 624 |
+
"llama_output = generate_llama_response(model, tokenizer, instruction, input_text)\n",
|
| 625 |
+
"\n",
|
| 626 |
+
"# Evaluate the output using various metrics\n",
|
| 627 |
+
"similarity_score = calculate_semantic_similarity(input_text, llama_output)\n",
|
| 628 |
+
"human_evaluation = human_level_evaluation(llama_output)\n",
|
| 629 |
+
"\n",
|
| 630 |
+
"# Display the results\n",
|
| 631 |
+
"print(\"\\nInstruction:\", instruction)\n",
|
| 632 |
+
"print(\"Input Text:\", input_text)\n",
|
| 633 |
+
"print(\"Generated Output:\", llama_output)\n",
|
| 634 |
+
"print(\"\\nEvaluation Metrics:\")\n",
|
| 635 |
+
"print(f\"Semantic Similarity Score (Prompt to Output): {similarity_score:.4f}\")\n",
|
| 636 |
+
"print(\"Human-level Evaluation Scores:\", human_evaluation)"
|
| 637 |
+
],
|
| 638 |
+
"metadata": {
|
| 639 |
+
"id": "NFCiAc2v2xTw",
|
| 640 |
+
"outputId": "0648c1e6-ddde-42d2-8537-009d881be94a",
|
| 641 |
+
"colab": {
|
| 642 |
+
"base_uri": "https://localhost:8080/"
|
| 643 |
+
}
|
| 644 |
+
},
|
| 645 |
+
"execution_count": 25,
|
| 646 |
+
"outputs": [
|
| 647 |
+
{
|
| 648 |
+
"output_type": "stream",
|
| 649 |
+
"name": "stdout",
|
| 650 |
+
"text": [
|
| 651 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 652 |
+
"\n",
|
| 653 |
+
" ### Instruction:\n",
|
| 654 |
+
" 日本語で出力を提供する\n",
|
| 655 |
+
"\n",
|
| 656 |
+
" ### Input:\n",
|
| 657 |
+
" 人工知能とは何ですか\n",
|
| 658 |
+
"\n",
|
| 659 |
+
" ### Response:\n",
|
| 660 |
+
" 人工知能(じんこうちのう)とは、コンピューターが人間のように考えたり、学習したり、意思決定を行ったりする技術のことです。これには、機械学習やディープラーニングなどの手法が含まれます。人工知能は、医療、金融、交通などのさま\n",
|
| 661 |
+
"\n",
|
| 662 |
+
"Instruction: 日本語で出力を提供する\n",
|
| 663 |
+
"Input Text: 人工知能とは何ですか\n",
|
| 664 |
+
"Generated Output: Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
| 665 |
+
"\n",
|
| 666 |
+
" ### Instruction:\n",
|
| 667 |
+
" 日本語で出力を提供する\n",
|
| 668 |
+
"\n",
|
| 669 |
+
" ### Input:\n",
|
| 670 |
+
" 人工知能とは何ですか\n",
|
| 671 |
+
"\n",
|
| 672 |
+
" ### Response:\n",
|
| 673 |
+
" 人工知能(じんこうちのう)とは、コンピューターが人間のように考えたり、学習したり、意思決定を行ったりする技術のことです。これには、機械学習やディープラーニングなどの手法が含まれます。人工知能は、医療、金融、交通などのさま\n",
|
| 674 |
+
"\n",
|
| 675 |
+
"Evaluation Metrics:\n",
|
| 676 |
+
"Semantic Similarity Score (Prompt to Output): 0.5944\n",
|
| 677 |
+
"Human-level Evaluation Scores: {'relevance': 3.43, 'fluency': 2.4, 'coherence': 4.74, 'engagement': 3.44, 'creativity': 4.9}\n"
|
| 678 |
+
]
|
| 679 |
+
}
|
| 680 |
+
]
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"cell_type": "code",
|
| 684 |
+
"source": [],
|
| 685 |
+
"metadata": {
|
| 686 |
+
"id": "1VmCg7Tk20OJ"
|
| 687 |
+
},
|
| 688 |
+
"execution_count": null,
|
| 689 |
+
"outputs": []
|
| 690 |
+
}
|
| 691 |
+
],
|
| 692 |
+
"metadata": {
|
| 693 |
+
"accelerator": "GPU",
|
| 694 |
+
"colab": {
|
| 695 |
+
"gpuType": "A100",
|
| 696 |
+
"provenance": [],
|
| 697 |
+
"machine_shape": "hm"
|
| 698 |
+
},
|
| 699 |
+
"kernelspec": {
|
| 700 |
+
"display_name": "Python 3",
|
| 701 |
+
"name": "python3"
|
| 702 |
+
},
|
| 703 |
+
"language_info": {
|
| 704 |
+
"name": "python"
|
| 705 |
+
},
|
| 706 |
+
"widgets": {
|
| 707 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 708 |
+
"5f8f113c31d34f6fa9330bae3ee0420b": {
|
| 709 |
+
"model_module": "@jupyter-widgets/controls",
|
| 710 |
+
"model_name": "HBoxModel",
|
| 711 |
+
"model_module_version": "1.5.0",
|
| 712 |
+
"state": {
|
| 713 |
+
"_dom_classes": [],
|
| 714 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 715 |
+
"_model_module_version": "1.5.0",
|
| 716 |
+
"_model_name": "HBoxModel",
|
| 717 |
+
"_view_count": null,
|
| 718 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 719 |
+
"_view_module_version": "1.5.0",
|
| 720 |
+
"_view_name": "HBoxView",
|
| 721 |
+
"box_style": "",
|
| 722 |
+
"children": [
|
| 723 |
+
"IPY_MODEL_f20e32c87de7433f941ff97d4d675cdb",
|
| 724 |
+
"IPY_MODEL_be8b969cddc0435ca085f404089f2056",
|
| 725 |
+
"IPY_MODEL_086b584a2b7b4ae4a86ebc7abd8ad5dc"
|
| 726 |
+
],
|
| 727 |
+
"layout": "IPY_MODEL_926eb6ec22fd498f8d7915490536eb0f"
|
| 728 |
+
}
|
| 729 |
+
},
|
| 730 |
+
"f20e32c87de7433f941ff97d4d675cdb": {
|
| 731 |
+
"model_module": "@jupyter-widgets/controls",
|
| 732 |
+
"model_name": "HTMLModel",
|
| 733 |
+
"model_module_version": "1.5.0",
|
| 734 |
+
"state": {
|
| 735 |
+
"_dom_classes": [],
|
| 736 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 737 |
+
"_model_module_version": "1.5.0",
|
| 738 |
+
"_model_name": "HTMLModel",
|
| 739 |
+
"_view_count": null,
|
| 740 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 741 |
+
"_view_module_version": "1.5.0",
|
| 742 |
+
"_view_name": "HTMLView",
|
| 743 |
+
"description": "",
|
| 744 |
+
"description_tooltip": null,
|
| 745 |
+
"layout": "IPY_MODEL_9aff796d690f45ebbfa03c83ac64b15d",
|
| 746 |
+
"placeholder": "",
|
| 747 |
+
"style": "IPY_MODEL_f9795627ed514b128db67a28a2127022",
|
| 748 |
+
"value": "Loading checkpoint shards: 100%"
|
| 749 |
+
}
|
| 750 |
+
},
|
| 751 |
+
"be8b969cddc0435ca085f404089f2056": {
|
| 752 |
+
"model_module": "@jupyter-widgets/controls",
|
| 753 |
+
"model_name": "FloatProgressModel",
|
| 754 |
+
"model_module_version": "1.5.0",
|
| 755 |
+
"state": {
|
| 756 |
+
"_dom_classes": [],
|
| 757 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 758 |
+
"_model_module_version": "1.5.0",
|
| 759 |
+
"_model_name": "FloatProgressModel",
|
| 760 |
+
"_view_count": null,
|
| 761 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 762 |
+
"_view_module_version": "1.5.0",
|
| 763 |
+
"_view_name": "ProgressView",
|
| 764 |
+
"bar_style": "success",
|
| 765 |
+
"description": "",
|
| 766 |
+
"description_tooltip": null,
|
| 767 |
+
"layout": "IPY_MODEL_7535ae64d8104d07a1659b738b0e6510",
|
| 768 |
+
"max": 2,
|
| 769 |
+
"min": 0,
|
| 770 |
+
"orientation": "horizontal",
|
| 771 |
+
"style": "IPY_MODEL_1b69fd582b1b48c0b8f15e544b28c39e",
|
| 772 |
+
"value": 2
|
| 773 |
+
}
|
| 774 |
+
},
|
| 775 |
+
"086b584a2b7b4ae4a86ebc7abd8ad5dc": {
|
| 776 |
+
"model_module": "@jupyter-widgets/controls",
|
| 777 |
+
"model_name": "HTMLModel",
|
| 778 |
+
"model_module_version": "1.5.0",
|
| 779 |
+
"state": {
|
| 780 |
+
"_dom_classes": [],
|
| 781 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 782 |
+
"_model_module_version": "1.5.0",
|
| 783 |
+
"_model_name": "HTMLModel",
|
| 784 |
+
"_view_count": null,
|
| 785 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 786 |
+
"_view_module_version": "1.5.0",
|
| 787 |
+
"_view_name": "HTMLView",
|
| 788 |
+
"description": "",
|
| 789 |
+
"description_tooltip": null,
|
| 790 |
+
"layout": "IPY_MODEL_e393fd0d6d18462580511d43f39bed59",
|
| 791 |
+
"placeholder": "",
|
| 792 |
+
"style": "IPY_MODEL_78a82107bd0b4dbfaf86255e475e9e0e",
|
| 793 |
+
"value": " 2/2 [00:44<00:00, 25.32s/it]"
|
| 794 |
+
}
|
| 795 |
+
},
|
| 796 |
+
"926eb6ec22fd498f8d7915490536eb0f": {
|
| 797 |
+
"model_module": "@jupyter-widgets/base",
|
| 798 |
+
"model_name": "LayoutModel",
|
| 799 |
+
"model_module_version": "1.2.0",
|
| 800 |
+
"state": {
|
| 801 |
+
"_model_module": "@jupyter-widgets/base",
|
| 802 |
+
"_model_module_version": "1.2.0",
|
| 803 |
+
"_model_name": "LayoutModel",
|
| 804 |
+
"_view_count": null,
|
| 805 |
+
"_view_module": "@jupyter-widgets/base",
|
| 806 |
+
"_view_module_version": "1.2.0",
|
| 807 |
+
"_view_name": "LayoutView",
|
| 808 |
+
"align_content": null,
|
| 809 |
+
"align_items": null,
|
| 810 |
+
"align_self": null,
|
| 811 |
+
"border": null,
|
| 812 |
+
"bottom": null,
|
| 813 |
+
"display": null,
|
| 814 |
+
"flex": null,
|
| 815 |
+
"flex_flow": null,
|
| 816 |
+
"grid_area": null,
|
| 817 |
+
"grid_auto_columns": null,
|
| 818 |
+
"grid_auto_flow": null,
|
| 819 |
+
"grid_auto_rows": null,
|
| 820 |
+
"grid_column": null,
|
| 821 |
+
"grid_gap": null,
|
| 822 |
+
"grid_row": null,
|
| 823 |
+
"grid_template_areas": null,
|
| 824 |
+
"grid_template_columns": null,
|
| 825 |
+
"grid_template_rows": null,
|
| 826 |
+
"height": null,
|
| 827 |
+
"justify_content": null,
|
| 828 |
+
"justify_items": null,
|
| 829 |
+
"left": null,
|
| 830 |
+
"margin": null,
|
| 831 |
+
"max_height": null,
|
| 832 |
+
"max_width": null,
|
| 833 |
+
"min_height": null,
|
| 834 |
+
"min_width": null,
|
| 835 |
+
"object_fit": null,
|
| 836 |
+
"object_position": null,
|
| 837 |
+
"order": null,
|
| 838 |
+
"overflow": null,
|
| 839 |
+
"overflow_x": null,
|
| 840 |
+
"overflow_y": null,
|
| 841 |
+
"padding": null,
|
| 842 |
+
"right": null,
|
| 843 |
+
"top": null,
|
| 844 |
+
"visibility": null,
|
| 845 |
+
"width": null
|
| 846 |
+
}
|
| 847 |
+
},
|
| 848 |
+
"9aff796d690f45ebbfa03c83ac64b15d": {
|
| 849 |
+
"model_module": "@jupyter-widgets/base",
|
| 850 |
+
"model_name": "LayoutModel",
|
| 851 |
+
"model_module_version": "1.2.0",
|
| 852 |
+
"state": {
|
| 853 |
+
"_model_module": "@jupyter-widgets/base",
|
| 854 |
+
"_model_module_version": "1.2.0",
|
| 855 |
+
"_model_name": "LayoutModel",
|
| 856 |
+
"_view_count": null,
|
| 857 |
+
"_view_module": "@jupyter-widgets/base",
|
| 858 |
+
"_view_module_version": "1.2.0",
|
| 859 |
+
"_view_name": "LayoutView",
|
| 860 |
+
"align_content": null,
|
| 861 |
+
"align_items": null,
|
| 862 |
+
"align_self": null,
|
| 863 |
+
"border": null,
|
| 864 |
+
"bottom": null,
|
| 865 |
+
"display": null,
|
| 866 |
+
"flex": null,
|
| 867 |
+
"flex_flow": null,
|
| 868 |
+
"grid_area": null,
|
| 869 |
+
"grid_auto_columns": null,
|
| 870 |
+
"grid_auto_flow": null,
|
| 871 |
+
"grid_auto_rows": null,
|
| 872 |
+
"grid_column": null,
|
| 873 |
+
"grid_gap": null,
|
| 874 |
+
"grid_row": null,
|
| 875 |
+
"grid_template_areas": null,
|
| 876 |
+
"grid_template_columns": null,
|
| 877 |
+
"grid_template_rows": null,
|
| 878 |
+
"height": null,
|
| 879 |
+
"justify_content": null,
|
| 880 |
+
"justify_items": null,
|
| 881 |
+
"left": null,
|
| 882 |
+
"margin": null,
|
| 883 |
+
"max_height": null,
|
| 884 |
+
"max_width": null,
|
| 885 |
+
"min_height": null,
|
| 886 |
+
"min_width": null,
|
| 887 |
+
"object_fit": null,
|
| 888 |
+
"object_position": null,
|
| 889 |
+
"order": null,
|
| 890 |
+
"overflow": null,
|
| 891 |
+
"overflow_x": null,
|
| 892 |
+
"overflow_y": null,
|
| 893 |
+
"padding": null,
|
| 894 |
+
"right": null,
|
| 895 |
+
"top": null,
|
| 896 |
+
"visibility": null,
|
| 897 |
+
"width": null
|
| 898 |
+
}
|
| 899 |
+
},
|
| 900 |
+
"f9795627ed514b128db67a28a2127022": {
|
| 901 |
+
"model_module": "@jupyter-widgets/controls",
|
| 902 |
+
"model_name": "DescriptionStyleModel",
|
| 903 |
+
"model_module_version": "1.5.0",
|
| 904 |
+
"state": {
|
| 905 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 906 |
+
"_model_module_version": "1.5.0",
|
| 907 |
+
"_model_name": "DescriptionStyleModel",
|
| 908 |
+
"_view_count": null,
|
| 909 |
+
"_view_module": "@jupyter-widgets/base",
|
| 910 |
+
"_view_module_version": "1.2.0",
|
| 911 |
+
"_view_name": "StyleView",
|
| 912 |
+
"description_width": ""
|
| 913 |
+
}
|
| 914 |
+
},
|
| 915 |
+
"7535ae64d8104d07a1659b738b0e6510": {
|
| 916 |
+
"model_module": "@jupyter-widgets/base",
|
| 917 |
+
"model_name": "LayoutModel",
|
| 918 |
+
"model_module_version": "1.2.0",
|
| 919 |
+
"state": {
|
| 920 |
+
"_model_module": "@jupyter-widgets/base",
|
| 921 |
+
"_model_module_version": "1.2.0",
|
| 922 |
+
"_model_name": "LayoutModel",
|
| 923 |
+
"_view_count": null,
|
| 924 |
+
"_view_module": "@jupyter-widgets/base",
|
| 925 |
+
"_view_module_version": "1.2.0",
|
| 926 |
+
"_view_name": "LayoutView",
|
| 927 |
+
"align_content": null,
|
| 928 |
+
"align_items": null,
|
| 929 |
+
"align_self": null,
|
| 930 |
+
"border": null,
|
| 931 |
+
"bottom": null,
|
| 932 |
+
"display": null,
|
| 933 |
+
"flex": null,
|
| 934 |
+
"flex_flow": null,
|
| 935 |
+
"grid_area": null,
|
| 936 |
+
"grid_auto_columns": null,
|
| 937 |
+
"grid_auto_flow": null,
|
| 938 |
+
"grid_auto_rows": null,
|
| 939 |
+
"grid_column": null,
|
| 940 |
+
"grid_gap": null,
|
| 941 |
+
"grid_row": null,
|
| 942 |
+
"grid_template_areas": null,
|
| 943 |
+
"grid_template_columns": null,
|
| 944 |
+
"grid_template_rows": null,
|
| 945 |
+
"height": null,
|
| 946 |
+
"justify_content": null,
|
| 947 |
+
"justify_items": null,
|
| 948 |
+
"left": null,
|
| 949 |
+
"margin": null,
|
| 950 |
+
"max_height": null,
|
| 951 |
+
"max_width": null,
|
| 952 |
+
"min_height": null,
|
| 953 |
+
"min_width": null,
|
| 954 |
+
"object_fit": null,
|
| 955 |
+
"object_position": null,
|
| 956 |
+
"order": null,
|
| 957 |
+
"overflow": null,
|
| 958 |
+
"overflow_x": null,
|
| 959 |
+
"overflow_y": null,
|
| 960 |
+
"padding": null,
|
| 961 |
+
"right": null,
|
| 962 |
+
"top": null,
|
| 963 |
+
"visibility": null,
|
| 964 |
+
"width": null
|
| 965 |
+
}
|
| 966 |
+
},
|
| 967 |
+
"1b69fd582b1b48c0b8f15e544b28c39e": {
|
| 968 |
+
"model_module": "@jupyter-widgets/controls",
|
| 969 |
+
"model_name": "ProgressStyleModel",
|
| 970 |
+
"model_module_version": "1.5.0",
|
| 971 |
+
"state": {
|
| 972 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 973 |
+
"_model_module_version": "1.5.0",
|
| 974 |
+
"_model_name": "ProgressStyleModel",
|
| 975 |
+
"_view_count": null,
|
| 976 |
+
"_view_module": "@jupyter-widgets/base",
|
| 977 |
+
"_view_module_version": "1.2.0",
|
| 978 |
+
"_view_name": "StyleView",
|
| 979 |
+
"bar_color": null,
|
| 980 |
+
"description_width": ""
|
| 981 |
+
}
|
| 982 |
+
},
|
| 983 |
+
"e393fd0d6d18462580511d43f39bed59": {
|
| 984 |
+
"model_module": "@jupyter-widgets/base",
|
| 985 |
+
"model_name": "LayoutModel",
|
| 986 |
+
"model_module_version": "1.2.0",
|
| 987 |
+
"state": {
|
| 988 |
+
"_model_module": "@jupyter-widgets/base",
|
| 989 |
+
"_model_module_version": "1.2.0",
|
| 990 |
+
"_model_name": "LayoutModel",
|
| 991 |
+
"_view_count": null,
|
| 992 |
+
"_view_module": "@jupyter-widgets/base",
|
| 993 |
+
"_view_module_version": "1.2.0",
|
| 994 |
+
"_view_name": "LayoutView",
|
| 995 |
+
"align_content": null,
|
| 996 |
+
"align_items": null,
|
| 997 |
+
"align_self": null,
|
| 998 |
+
"border": null,
|
| 999 |
+
"bottom": null,
|
| 1000 |
+
"display": null,
|
| 1001 |
+
"flex": null,
|
| 1002 |
+
"flex_flow": null,
|
| 1003 |
+
"grid_area": null,
|
| 1004 |
+
"grid_auto_columns": null,
|
| 1005 |
+
"grid_auto_flow": null,
|
| 1006 |
+
"grid_auto_rows": null,
|
| 1007 |
+
"grid_column": null,
|
| 1008 |
+
"grid_gap": null,
|
| 1009 |
+
"grid_row": null,
|
| 1010 |
+
"grid_template_areas": null,
|
| 1011 |
+
"grid_template_columns": null,
|
| 1012 |
+
"grid_template_rows": null,
|
| 1013 |
+
"height": null,
|
| 1014 |
+
"justify_content": null,
|
| 1015 |
+
"justify_items": null,
|
| 1016 |
+
"left": null,
|
| 1017 |
+
"margin": null,
|
| 1018 |
+
"max_height": null,
|
| 1019 |
+
"max_width": null,
|
| 1020 |
+
"min_height": null,
|
| 1021 |
+
"min_width": null,
|
| 1022 |
+
"object_fit": null,
|
| 1023 |
+
"object_position": null,
|
| 1024 |
+
"order": null,
|
| 1025 |
+
"overflow": null,
|
| 1026 |
+
"overflow_x": null,
|
| 1027 |
+
"overflow_y": null,
|
| 1028 |
+
"padding": null,
|
| 1029 |
+
"right": null,
|
| 1030 |
+
"top": null,
|
| 1031 |
+
"visibility": null,
|
| 1032 |
+
"width": null
|
| 1033 |
+
}
|
| 1034 |
+
},
|
| 1035 |
+
"78a82107bd0b4dbfaf86255e475e9e0e": {
|
| 1036 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1037 |
+
"model_name": "DescriptionStyleModel",
|
| 1038 |
+
"model_module_version": "1.5.0",
|
| 1039 |
+
"state": {
|
| 1040 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1041 |
+
"_model_module_version": "1.5.0",
|
| 1042 |
+
"_model_name": "DescriptionStyleModel",
|
| 1043 |
+
"_view_count": null,
|
| 1044 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1045 |
+
"_view_module_version": "1.2.0",
|
| 1046 |
+
"_view_name": "StyleView",
|
| 1047 |
+
"description_width": ""
|
| 1048 |
+
}
|
| 1049 |
+
},
|
| 1050 |
+
"86fa49f7dfdd42f6b2c83105e4889944": {
|
| 1051 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1052 |
+
"model_name": "HBoxModel",
|
| 1053 |
+
"model_module_version": "1.5.0",
|
| 1054 |
+
"state": {
|
| 1055 |
+
"_dom_classes": [],
|
| 1056 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1057 |
+
"_model_module_version": "1.5.0",
|
| 1058 |
+
"_model_name": "HBoxModel",
|
| 1059 |
+
"_view_count": null,
|
| 1060 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1061 |
+
"_view_module_version": "1.5.0",
|
| 1062 |
+
"_view_name": "HBoxView",
|
| 1063 |
+
"box_style": "",
|
| 1064 |
+
"children": [
|
| 1065 |
+
"IPY_MODEL_3c20a2f65fd54b0fb75b8d3fd79cddb8",
|
| 1066 |
+
"IPY_MODEL_b8ad6afc290e4d2997544ba9918d0add",
|
| 1067 |
+
"IPY_MODEL_97df0d8e9c974748b185a3ae06251901"
|
| 1068 |
+
],
|
| 1069 |
+
"layout": "IPY_MODEL_c4c18bde61494f5ab1c7458ec5890a21"
|
| 1070 |
+
}
|
| 1071 |
+
},
|
| 1072 |
+
"3c20a2f65fd54b0fb75b8d3fd79cddb8": {
|
| 1073 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1074 |
+
"model_name": "HTMLModel",
|
| 1075 |
+
"model_module_version": "1.5.0",
|
| 1076 |
+
"state": {
|
| 1077 |
+
"_dom_classes": [],
|
| 1078 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1079 |
+
"_model_module_version": "1.5.0",
|
| 1080 |
+
"_model_name": "HTMLModel",
|
| 1081 |
+
"_view_count": null,
|
| 1082 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1083 |
+
"_view_module_version": "1.5.0",
|
| 1084 |
+
"_view_name": "HTMLView",
|
| 1085 |
+
"description": "",
|
| 1086 |
+
"description_tooltip": null,
|
| 1087 |
+
"layout": "IPY_MODEL_59ad6c0427824084a5898e481afbd039",
|
| 1088 |
+
"placeholder": "",
|
| 1089 |
+
"style": "IPY_MODEL_096408b6d89f4fb3a9af0556c25845a7",
|
| 1090 |
+
"value": "Loading checkpoint shards: 100%"
|
| 1091 |
+
}
|
| 1092 |
+
},
|
| 1093 |
+
"b8ad6afc290e4d2997544ba9918d0add": {
|
| 1094 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1095 |
+
"model_name": "FloatProgressModel",
|
| 1096 |
+
"model_module_version": "1.5.0",
|
| 1097 |
+
"state": {
|
| 1098 |
+
"_dom_classes": [],
|
| 1099 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1100 |
+
"_model_module_version": "1.5.0",
|
| 1101 |
+
"_model_name": "FloatProgressModel",
|
| 1102 |
+
"_view_count": null,
|
| 1103 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1104 |
+
"_view_module_version": "1.5.0",
|
| 1105 |
+
"_view_name": "ProgressView",
|
| 1106 |
+
"bar_style": "success",
|
| 1107 |
+
"description": "",
|
| 1108 |
+
"description_tooltip": null,
|
| 1109 |
+
"layout": "IPY_MODEL_e376255907964fe18cac3df52de4a8ae",
|
| 1110 |
+
"max": 2,
|
| 1111 |
+
"min": 0,
|
| 1112 |
+
"orientation": "horizontal",
|
| 1113 |
+
"style": "IPY_MODEL_34704da4553e42eda137ca9354a42545",
|
| 1114 |
+
"value": 2
|
| 1115 |
+
}
|
| 1116 |
+
},
|
| 1117 |
+
"97df0d8e9c974748b185a3ae06251901": {
|
| 1118 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1119 |
+
"model_name": "HTMLModel",
|
| 1120 |
+
"model_module_version": "1.5.0",
|
| 1121 |
+
"state": {
|
| 1122 |
+
"_dom_classes": [],
|
| 1123 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1124 |
+
"_model_module_version": "1.5.0",
|
| 1125 |
+
"_model_name": "HTMLModel",
|
| 1126 |
+
"_view_count": null,
|
| 1127 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1128 |
+
"_view_module_version": "1.5.0",
|
| 1129 |
+
"_view_name": "HTMLView",
|
| 1130 |
+
"description": "",
|
| 1131 |
+
"description_tooltip": null,
|
| 1132 |
+
"layout": "IPY_MODEL_758165c6c34640b899ad688dfe1e31ae",
|
| 1133 |
+
"placeholder": "",
|
| 1134 |
+
"style": "IPY_MODEL_7363bab33fe94fb899195e09b88037fc",
|
| 1135 |
+
"value": " 2/2 [01:01<00:00, 28.97s/it]"
|
| 1136 |
+
}
|
| 1137 |
+
},
|
| 1138 |
+
"c4c18bde61494f5ab1c7458ec5890a21": {
|
| 1139 |
+
"model_module": "@jupyter-widgets/base",
|
| 1140 |
+
"model_name": "LayoutModel",
|
| 1141 |
+
"model_module_version": "1.2.0",
|
| 1142 |
+
"state": {
|
| 1143 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1144 |
+
"_model_module_version": "1.2.0",
|
| 1145 |
+
"_model_name": "LayoutModel",
|
| 1146 |
+
"_view_count": null,
|
| 1147 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1148 |
+
"_view_module_version": "1.2.0",
|
| 1149 |
+
"_view_name": "LayoutView",
|
| 1150 |
+
"align_content": null,
|
| 1151 |
+
"align_items": null,
|
| 1152 |
+
"align_self": null,
|
| 1153 |
+
"border": null,
|
| 1154 |
+
"bottom": null,
|
| 1155 |
+
"display": null,
|
| 1156 |
+
"flex": null,
|
| 1157 |
+
"flex_flow": null,
|
| 1158 |
+
"grid_area": null,
|
| 1159 |
+
"grid_auto_columns": null,
|
| 1160 |
+
"grid_auto_flow": null,
|
| 1161 |
+
"grid_auto_rows": null,
|
| 1162 |
+
"grid_column": null,
|
| 1163 |
+
"grid_gap": null,
|
| 1164 |
+
"grid_row": null,
|
| 1165 |
+
"grid_template_areas": null,
|
| 1166 |
+
"grid_template_columns": null,
|
| 1167 |
+
"grid_template_rows": null,
|
| 1168 |
+
"height": null,
|
| 1169 |
+
"justify_content": null,
|
| 1170 |
+
"justify_items": null,
|
| 1171 |
+
"left": null,
|
| 1172 |
+
"margin": null,
|
| 1173 |
+
"max_height": null,
|
| 1174 |
+
"max_width": null,
|
| 1175 |
+
"min_height": null,
|
| 1176 |
+
"min_width": null,
|
| 1177 |
+
"object_fit": null,
|
| 1178 |
+
"object_position": null,
|
| 1179 |
+
"order": null,
|
| 1180 |
+
"overflow": null,
|
| 1181 |
+
"overflow_x": null,
|
| 1182 |
+
"overflow_y": null,
|
| 1183 |
+
"padding": null,
|
| 1184 |
+
"right": null,
|
| 1185 |
+
"top": null,
|
| 1186 |
+
"visibility": null,
|
| 1187 |
+
"width": null
|
| 1188 |
+
}
|
| 1189 |
+
},
|
| 1190 |
+
"59ad6c0427824084a5898e481afbd039": {
|
| 1191 |
+
"model_module": "@jupyter-widgets/base",
|
| 1192 |
+
"model_name": "LayoutModel",
|
| 1193 |
+
"model_module_version": "1.2.0",
|
| 1194 |
+
"state": {
|
| 1195 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1196 |
+
"_model_module_version": "1.2.0",
|
| 1197 |
+
"_model_name": "LayoutModel",
|
| 1198 |
+
"_view_count": null,
|
| 1199 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1200 |
+
"_view_module_version": "1.2.0",
|
| 1201 |
+
"_view_name": "LayoutView",
|
| 1202 |
+
"align_content": null,
|
| 1203 |
+
"align_items": null,
|
| 1204 |
+
"align_self": null,
|
| 1205 |
+
"border": null,
|
| 1206 |
+
"bottom": null,
|
| 1207 |
+
"display": null,
|
| 1208 |
+
"flex": null,
|
| 1209 |
+
"flex_flow": null,
|
| 1210 |
+
"grid_area": null,
|
| 1211 |
+
"grid_auto_columns": null,
|
| 1212 |
+
"grid_auto_flow": null,
|
| 1213 |
+
"grid_auto_rows": null,
|
| 1214 |
+
"grid_column": null,
|
| 1215 |
+
"grid_gap": null,
|
| 1216 |
+
"grid_row": null,
|
| 1217 |
+
"grid_template_areas": null,
|
| 1218 |
+
"grid_template_columns": null,
|
| 1219 |
+
"grid_template_rows": null,
|
| 1220 |
+
"height": null,
|
| 1221 |
+
"justify_content": null,
|
| 1222 |
+
"justify_items": null,
|
| 1223 |
+
"left": null,
|
| 1224 |
+
"margin": null,
|
| 1225 |
+
"max_height": null,
|
| 1226 |
+
"max_width": null,
|
| 1227 |
+
"min_height": null,
|
| 1228 |
+
"min_width": null,
|
| 1229 |
+
"object_fit": null,
|
| 1230 |
+
"object_position": null,
|
| 1231 |
+
"order": null,
|
| 1232 |
+
"overflow": null,
|
| 1233 |
+
"overflow_x": null,
|
| 1234 |
+
"overflow_y": null,
|
| 1235 |
+
"padding": null,
|
| 1236 |
+
"right": null,
|
| 1237 |
+
"top": null,
|
| 1238 |
+
"visibility": null,
|
| 1239 |
+
"width": null
|
| 1240 |
+
}
|
| 1241 |
+
},
|
| 1242 |
+
"096408b6d89f4fb3a9af0556c25845a7": {
|
| 1243 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1244 |
+
"model_name": "DescriptionStyleModel",
|
| 1245 |
+
"model_module_version": "1.5.0",
|
| 1246 |
+
"state": {
|
| 1247 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1248 |
+
"_model_module_version": "1.5.0",
|
| 1249 |
+
"_model_name": "DescriptionStyleModel",
|
| 1250 |
+
"_view_count": null,
|
| 1251 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1252 |
+
"_view_module_version": "1.2.0",
|
| 1253 |
+
"_view_name": "StyleView",
|
| 1254 |
+
"description_width": ""
|
| 1255 |
+
}
|
| 1256 |
+
},
|
| 1257 |
+
"e376255907964fe18cac3df52de4a8ae": {
|
| 1258 |
+
"model_module": "@jupyter-widgets/base",
|
| 1259 |
+
"model_name": "LayoutModel",
|
| 1260 |
+
"model_module_version": "1.2.0",
|
| 1261 |
+
"state": {
|
| 1262 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1263 |
+
"_model_module_version": "1.2.0",
|
| 1264 |
+
"_model_name": "LayoutModel",
|
| 1265 |
+
"_view_count": null,
|
| 1266 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1267 |
+
"_view_module_version": "1.2.0",
|
| 1268 |
+
"_view_name": "LayoutView",
|
| 1269 |
+
"align_content": null,
|
| 1270 |
+
"align_items": null,
|
| 1271 |
+
"align_self": null,
|
| 1272 |
+
"border": null,
|
| 1273 |
+
"bottom": null,
|
| 1274 |
+
"display": null,
|
| 1275 |
+
"flex": null,
|
| 1276 |
+
"flex_flow": null,
|
| 1277 |
+
"grid_area": null,
|
| 1278 |
+
"grid_auto_columns": null,
|
| 1279 |
+
"grid_auto_flow": null,
|
| 1280 |
+
"grid_auto_rows": null,
|
| 1281 |
+
"grid_column": null,
|
| 1282 |
+
"grid_gap": null,
|
| 1283 |
+
"grid_row": null,
|
| 1284 |
+
"grid_template_areas": null,
|
| 1285 |
+
"grid_template_columns": null,
|
| 1286 |
+
"grid_template_rows": null,
|
| 1287 |
+
"height": null,
|
| 1288 |
+
"justify_content": null,
|
| 1289 |
+
"justify_items": null,
|
| 1290 |
+
"left": null,
|
| 1291 |
+
"margin": null,
|
| 1292 |
+
"max_height": null,
|
| 1293 |
+
"max_width": null,
|
| 1294 |
+
"min_height": null,
|
| 1295 |
+
"min_width": null,
|
| 1296 |
+
"object_fit": null,
|
| 1297 |
+
"object_position": null,
|
| 1298 |
+
"order": null,
|
| 1299 |
+
"overflow": null,
|
| 1300 |
+
"overflow_x": null,
|
| 1301 |
+
"overflow_y": null,
|
| 1302 |
+
"padding": null,
|
| 1303 |
+
"right": null,
|
| 1304 |
+
"top": null,
|
| 1305 |
+
"visibility": null,
|
| 1306 |
+
"width": null
|
| 1307 |
+
}
|
| 1308 |
+
},
|
| 1309 |
+
"34704da4553e42eda137ca9354a42545": {
|
| 1310 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1311 |
+
"model_name": "ProgressStyleModel",
|
| 1312 |
+
"model_module_version": "1.5.0",
|
| 1313 |
+
"state": {
|
| 1314 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1315 |
+
"_model_module_version": "1.5.0",
|
| 1316 |
+
"_model_name": "ProgressStyleModel",
|
| 1317 |
+
"_view_count": null,
|
| 1318 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1319 |
+
"_view_module_version": "1.2.0",
|
| 1320 |
+
"_view_name": "StyleView",
|
| 1321 |
+
"bar_color": null,
|
| 1322 |
+
"description_width": ""
|
| 1323 |
+
}
|
| 1324 |
+
},
|
| 1325 |
+
"758165c6c34640b899ad688dfe1e31ae": {
|
| 1326 |
+
"model_module": "@jupyter-widgets/base",
|
| 1327 |
+
"model_name": "LayoutModel",
|
| 1328 |
+
"model_module_version": "1.2.0",
|
| 1329 |
+
"state": {
|
| 1330 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1331 |
+
"_model_module_version": "1.2.0",
|
| 1332 |
+
"_model_name": "LayoutModel",
|
| 1333 |
+
"_view_count": null,
|
| 1334 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1335 |
+
"_view_module_version": "1.2.0",
|
| 1336 |
+
"_view_name": "LayoutView",
|
| 1337 |
+
"align_content": null,
|
| 1338 |
+
"align_items": null,
|
| 1339 |
+
"align_self": null,
|
| 1340 |
+
"border": null,
|
| 1341 |
+
"bottom": null,
|
| 1342 |
+
"display": null,
|
| 1343 |
+
"flex": null,
|
| 1344 |
+
"flex_flow": null,
|
| 1345 |
+
"grid_area": null,
|
| 1346 |
+
"grid_auto_columns": null,
|
| 1347 |
+
"grid_auto_flow": null,
|
| 1348 |
+
"grid_auto_rows": null,
|
| 1349 |
+
"grid_column": null,
|
| 1350 |
+
"grid_gap": null,
|
| 1351 |
+
"grid_row": null,
|
| 1352 |
+
"grid_template_areas": null,
|
| 1353 |
+
"grid_template_columns": null,
|
| 1354 |
+
"grid_template_rows": null,
|
| 1355 |
+
"height": null,
|
| 1356 |
+
"justify_content": null,
|
| 1357 |
+
"justify_items": null,
|
| 1358 |
+
"left": null,
|
| 1359 |
+
"margin": null,
|
| 1360 |
+
"max_height": null,
|
| 1361 |
+
"max_width": null,
|
| 1362 |
+
"min_height": null,
|
| 1363 |
+
"min_width": null,
|
| 1364 |
+
"object_fit": null,
|
| 1365 |
+
"object_position": null,
|
| 1366 |
+
"order": null,
|
| 1367 |
+
"overflow": null,
|
| 1368 |
+
"overflow_x": null,
|
| 1369 |
+
"overflow_y": null,
|
| 1370 |
+
"padding": null,
|
| 1371 |
+
"right": null,
|
| 1372 |
+
"top": null,
|
| 1373 |
+
"visibility": null,
|
| 1374 |
+
"width": null
|
| 1375 |
+
}
|
| 1376 |
+
},
|
| 1377 |
+
"7363bab33fe94fb899195e09b88037fc": {
|
| 1378 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1379 |
+
"model_name": "DescriptionStyleModel",
|
| 1380 |
+
"model_module_version": "1.5.0",
|
| 1381 |
+
"state": {
|
| 1382 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1383 |
+
"_model_module_version": "1.5.0",
|
| 1384 |
+
"_model_name": "DescriptionStyleModel",
|
| 1385 |
+
"_view_count": null,
|
| 1386 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1387 |
+
"_view_module_version": "1.2.0",
|
| 1388 |
+
"_view_name": "StyleView",
|
| 1389 |
+
"description_width": ""
|
| 1390 |
+
}
|
| 1391 |
+
}
|
| 1392 |
+
}
|
| 1393 |
+
}
|
| 1394 |
+
},
|
| 1395 |
+
"nbformat": 4,
|
| 1396 |
+
"nbformat_minor": 0
|
| 1397 |
+
}
|
eng_jap_training.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|