Spaces:
Sleeping
Sleeping
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import transformers
|
| 3 |
from model_config import PragFormerConfig
|
| 4 |
-
from model import
|
| 5 |
from simpletransformers.classification import ClassificationModel, ClassificationArgs
|
| 6 |
import torch
|
| 7 |
import json
|
|
@@ -11,9 +11,9 @@ deep_scc_model_args = ClassificationArgs(num_train_epochs=10,max_seq_length=300,
|
|
| 11 |
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
|
| 12 |
|
| 13 |
pragformer_config = PragFormerConfig.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
| 14 |
-
pragformer =
|
| 15 |
-
pragformer_private =
|
| 16 |
-
pragformer_reduction =
|
| 17 |
|
| 18 |
|
| 19 |
#Event Listeners
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import transformers
|
| 3 |
from model_config import PragFormerConfig
|
| 4 |
+
from model import Pragformer
|
| 5 |
from simpletransformers.classification import ClassificationModel, ClassificationArgs
|
| 6 |
import torch
|
| 7 |
import json
|
|
|
|
| 11 |
deep_scc_model = ClassificationModel("roberta", "NTUYG/DeepSCC-RoBERTa", num_labels=19, args=deep_scc_model_args, use_cuda=False)
|
| 12 |
|
| 13 |
pragformer_config = PragFormerConfig.from_pretrained("Pragformer/PragFormer", trust_remote_code=True)
|
| 14 |
+
pragformer = Pragformer.from_pretrained("Pragformer/PragFormer", config=pragformer_config, trust_remote_code=True)
|
| 15 |
+
pragformer_private = Pragformer.from_pretrained("Pragformer/PragFormer_private", config=pragformer_config, trust_remote_code=True)
|
| 16 |
+
pragformer_reduction = Pragformer.from_pretrained("Pragformer/PragFormer_reduction", config=pragformer_config, trust_remote_code=True)
|
| 17 |
|
| 18 |
|
| 19 |
#Event Listeners
|
model.py
CHANGED
|
@@ -5,7 +5,7 @@ from model_config import PragFormerConfig
|
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
-
class
|
| 9 |
config_class = PragFormerConfig
|
| 10 |
|
| 11 |
def __init__(self, config):
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
|
| 8 |
+
class Pragformer(PreTrainedModel): #(BertPreTrainedModel):
|
| 9 |
config_class = PragFormerConfig
|
| 10 |
|
| 11 |
def __init__(self, config):
|