Spaces:
Runtime error
Runtime error
Sam
commited on
Commit
·
fb30cb6
1
Parent(s):
3b630ea
v0.1
Browse files- README.md +7 -0
- app.py +134 -0
- requirements.txt +6 -0
README.md
CHANGED
|
@@ -1,4 +1,11 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
title: Moondream 2 Multi Interrogation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
title: Moondream 2 Multi Interrogation
|
| 4 |
+
emoji: 🌀
|
| 5 |
+
colorFrom: yellow
|
| 6 |
+
colorTo: purple
|
| 7 |
+
sdk: gradio
|
| 8 |
+
sdk_version: "4.31.3"
|
| 9 |
+
app_file: app.py
|
| 10 |
+
pinned: true
|
| 11 |
---
|
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import requests
|
| 6 |
+
import time
|
| 7 |
+
import random
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from typing import Union
|
| 10 |
+
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
print(f"Using {device}" if device != "cpu" else "Using CPU")
|
| 13 |
+
|
| 14 |
+
def _load_model():
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained("vikhyatk/moondream2", trust_remote_code=True, revision="2024-05-08")
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained("vikhyatk/moondream2", device_map=device, trust_remote_code=True, revision="2024-05-08")
|
| 17 |
+
return (model, tokenizer)
|
| 18 |
+
|
| 19 |
+
class MoonDream():
|
| 20 |
+
def __init__(self, model=None, tokenizer=None):
|
| 21 |
+
self.model, self.tokenizer = (model, tokenizer)
|
| 22 |
+
if not model or not tokenizer:
|
| 23 |
+
self.model, self.tokenizer = _load_model()
|
| 24 |
+
self.device = device
|
| 25 |
+
self.model.to(self.device)
|
| 26 |
+
def __call__(self, question, imgs):
|
| 27 |
+
imn = 0
|
| 28 |
+
for img in imgs:
|
| 29 |
+
img = self.model.encode_image(img)
|
| 30 |
+
res = self.model.answer_question(question=question, image_embeds=img, tokenizer=self.tokenizer)
|
| 31 |
+
yield res
|
| 32 |
+
return
|
| 33 |
+
|
| 34 |
+
def _respond_one(question, img):
|
| 35 |
+
txt = ""
|
| 36 |
+
yield (txt := txt + MoonDream()(question, [img]))
|
| 37 |
+
return txt
|
| 38 |
+
|
| 39 |
+
def respond_batch(question, **imgs):
|
| 40 |
+
md = MoonDream()
|
| 41 |
+
for img in imgs.values():
|
| 42 |
+
res = md(question, img)
|
| 43 |
+
for r in res:
|
| 44 |
+
yield r
|
| 45 |
+
yield "\n\n\n\n\n\n"
|
| 46 |
+
return
|
| 47 |
+
|
| 48 |
+
red = Image.new("RGB", (192,192), (255,0,0))
|
| 49 |
+
green = Image.new("RGB", (192,192), (0,255,0))
|
| 50 |
+
blue = Image.new("RGB", (192,192), (0,0,255))
|
| 51 |
+
res = respond_batch("What color is this? Elaborate upon what emotion registers most strongly with you upon viewing. ", imgs=[red, green, blue])
|
| 52 |
+
for r in res:
|
| 53 |
+
print(r)
|
| 54 |
+
if "\n\n\n\n\n\n" in r:
|
| 55 |
+
break
|
| 56 |
+
|
| 57 |
+
def dual_images(img1: Image):
|
| 58 |
+
# Ran once for each img to it's respective output. Output should be detailed str of description/feature extraction/interrogation.
|
| 59 |
+
md = MoonDream()
|
| 60 |
+
res = md("Describe the image in plain english ", [img1])
|
| 61 |
+
txt = ""
|
| 62 |
+
for r in res:
|
| 63 |
+
yield (txt := txt + r)
|
| 64 |
+
return
|
| 65 |
+
|
| 66 |
+
import os
|
| 67 |
+
|
| 68 |
+
with open("together_key.txt", "r") as f:
|
| 69 |
+
os.environ["TOGETHER_KEY"] = f.read().strip()
|
| 70 |
+
print("Set together key")
|
| 71 |
+
|
| 72 |
+
def merge_descriptions_to_prompt(mi, d1, d2):
|
| 73 |
+
from together import Together
|
| 74 |
+
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
|
| 75 |
+
res = tog.completions.create(prompt=f"""Describe what would result if the following two descriptions were describing one thing.
|
| 76 |
+
### Description 1:
|
| 77 |
+
```text
|
| 78 |
+
{d1}
|
| 79 |
+
```
|
| 80 |
+
### Description 2:
|
| 81 |
+
```text
|
| 82 |
+
{d2}
|
| 83 |
+
```
|
| 84 |
+
Merge-Specific Instructions:
|
| 85 |
+
```text
|
| 86 |
+
{mi}
|
| 87 |
+
```
|
| 88 |
+
Ensure you end your output with ```\\n
|
| 89 |
+
---
|
| 90 |
+
Complete Description:
|
| 91 |
+
```text""", model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
|
| 92 |
+
return res.choices[0].text.split("```")[0]
|
| 93 |
+
|
| 94 |
+
def xform_image_description(img, inst):
|
| 95 |
+
from together import Together
|
| 96 |
+
desc = dual_images(img)
|
| 97 |
+
tog = Together(api_key=os.getenv("TOGETHER_KEY"))
|
| 98 |
+
prompt=f"""Describe the image in aggressively verbose detail. I must know every freckle upon a man's brow and each blade of the grass intimately.\nDescription: ```text\n{desc}\n```\nInstructions:\n```text\n{inst}\n```\n\n\n---\nDetailed Description:\n```text"""
|
| 99 |
+
res = tog.completions.create(prompt=prompt, model="meta-llama/Meta-Llama-3-70B", stop=["```"], max_tokens=1024)
|
| 100 |
+
return res.choices[0].text[len(prompt):].split("```")[0]
|
| 101 |
+
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
with gr.Row(visible=True):
|
| 104 |
+
with gr.Column():
|
| 105 |
+
with gr.Row():
|
| 106 |
+
img = gr.Image(label="images", type='pil')
|
| 107 |
+
with gr.Row():
|
| 108 |
+
btn = gr.Button("submit")
|
| 109 |
+
with gr.Row():
|
| 110 |
+
otpt = gr.Textbox(label="output", lines=3, interactive=True)
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column():
|
| 113 |
+
im1 = gr.Image(label="image 1", type='pil')
|
| 114 |
+
with gr.Column():
|
| 115 |
+
im2 = gr.Image(label="image 2", type='pil')
|
| 116 |
+
with gr.Row():
|
| 117 |
+
btn2 = gr.Button("submit batch")
|
| 118 |
+
with gr.Row():
|
| 119 |
+
with gr.Column():
|
| 120 |
+
otp2 = gr.Textbox(label="individual batch output (left)", interactive=True)
|
| 121 |
+
with gr.Column():
|
| 122 |
+
otp3 = gr.Textbox(label="individual batch output (right)", interactive=True)
|
| 123 |
+
with gr.Row():
|
| 124 |
+
minst = gr.Textbox(label="Merge Instructions")
|
| 125 |
+
with gr.Row():
|
| 126 |
+
btn_scd = gr.Button("Merge Descriptions to Single Combined Description")
|
| 127 |
+
with gr.Row():
|
| 128 |
+
otp4 = gr.Textbox(label="batch output ( combined )", interactive=True, lines=4)
|
| 129 |
+
btn2.click(dual_images, inputs=[im1], outputs=[otp2])
|
| 130 |
+
btn2.click(dual_images, inputs=[im2], outputs=[otp3])
|
| 131 |
+
btn.click(dual_images, inputs=[img], outputs=[otpt])
|
| 132 |
+
btn_scd.click(merge_descriptions_to_prompt, inputs=[minst, otp2, otp3], outputs=[otp4])
|
| 133 |
+
|
| 134 |
+
demo.launch(debug=True, share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.31.3
|
| 2 |
+
transformers==4.40.2
|
| 3 |
+
accelerate==0.30.1
|
| 4 |
+
einops==0.8.0
|
| 5 |
+
pillow==10.3.0
|
| 6 |
+
together==1.1.5
|