Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,110 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
import streamlit as st
|
| 4 |
import gspread
|
| 5 |
import plotly.express as px
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
sh = gc.open_by_url(master_hold)
|
| 35 |
-
worksheet = sh.worksheet('
|
| 36 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 37 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
return raw_display
|
| 41 |
|
| 42 |
-
|
| 43 |
-
def player_stat_table():
|
| 44 |
-
sh = gc.open_by_url(master_hold)
|
| 45 |
-
worksheet = sh.worksheet('Prop_Table')
|
| 46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 47 |
raw_display.replace('', np.nan, inplace=True)
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
@st.cache_data
|
| 53 |
-
def timestamp_table():
|
| 54 |
-
sh = gc.open_by_url(master_hold)
|
| 55 |
-
worksheet = sh.worksheet('DK_ROO')
|
| 56 |
-
raw_display = worksheet.acell('U2').value
|
| 57 |
-
|
| 58 |
-
return raw_display
|
| 59 |
|
| 60 |
-
|
| 61 |
-
def player_prop_table():
|
| 62 |
-
sh = gc.open_by_url(master_hold)
|
| 63 |
-
worksheet = sh.worksheet('prop_frame')
|
| 64 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 65 |
raw_display.replace('', np.nan, inplace=True)
|
| 66 |
-
|
| 67 |
|
| 68 |
-
return
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
timestamp = timestamp_table()
|
| 75 |
-
prop_frame = player_prop_table()
|
| 76 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 77 |
|
| 78 |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"])
|
| 79 |
|
| 80 |
-
def convert_df_to_csv(df):
|
| 81 |
-
return df.to_csv().encode('utf-8')
|
| 82 |
-
|
| 83 |
with tab1:
|
| 84 |
st.info(t_stamp)
|
| 85 |
if st.button("Reset Data", key='reset1'):
|
| 86 |
st.cache_data.clear()
|
| 87 |
-
game_model =
|
| 88 |
-
|
| 89 |
-
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 90 |
-
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 91 |
-
prop_frame = player_prop_table()
|
| 92 |
-
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
| 93 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
| 94 |
team_frame = game_model
|
| 95 |
if line_var1 == 'Percentage':
|
| 96 |
-
team_frame = team_frame[['
|
| 97 |
-
team_frame = team_frame.set_index('
|
| 98 |
-
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(
|
| 99 |
if line_var1 == 'American':
|
| 100 |
-
team_frame = team_frame[['
|
| 101 |
-
team_frame = team_frame.set_index('
|
| 102 |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 103 |
|
| 104 |
st.download_button(
|
| 105 |
label="Export Team Model",
|
| 106 |
data=convert_df_to_csv(team_frame),
|
| 107 |
-
file_name='
|
| 108 |
mime='text/csv',
|
| 109 |
key='team_export',
|
| 110 |
)
|
|
@@ -113,66 +99,31 @@ with tab2:
|
|
| 113 |
st.info(t_stamp)
|
| 114 |
if st.button("Reset Data", key='reset2'):
|
| 115 |
st.cache_data.clear()
|
| 116 |
-
game_model =
|
| 117 |
-
|
| 118 |
-
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 119 |
-
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 120 |
-
prop_frame = player_prop_table()
|
| 121 |
-
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
| 122 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
| 123 |
if split_var1 == 'Specific Teams':
|
| 124 |
-
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options =
|
| 125 |
elif split_var1 == 'All':
|
| 126 |
-
team_var1 =
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
st.dataframe(
|
| 131 |
st.download_button(
|
| 132 |
label="Export Prop Model",
|
| 133 |
-
data=convert_df_to_csv(
|
| 134 |
-
file_name='
|
| 135 |
mime='text/csv',
|
| 136 |
key='pitcher_prop_export',
|
| 137 |
)
|
| 138 |
-
|
| 139 |
with tab3:
|
| 140 |
-
st.info(t_stamp)
|
| 141 |
-
if st.button("Reset Data", key='reset3'):
|
| 142 |
-
st.cache_data.clear()
|
| 143 |
-
game_model = game_betting_model()
|
| 144 |
-
overall_stats = player_stat_table()
|
| 145 |
-
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 146 |
-
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 147 |
-
prop_frame = player_prop_table()
|
| 148 |
-
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
| 149 |
-
split_var2 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var2')
|
| 150 |
-
if split_var2 == 'Specific Teams':
|
| 151 |
-
team_var2 = st.multiselect('Which teams would you like to include in the tables?', options = non_qb_stats['Team'].unique(), key='team_var2')
|
| 152 |
-
elif split_var2 == 'All':
|
| 153 |
-
team_var2 = non_qb_stats.Team.values.tolist()
|
| 154 |
-
non_qb_stats = non_qb_stats[non_qb_stats['Team'].isin(team_var2)]
|
| 155 |
-
non_qb_stats_disp = non_qb_stats.set_index('Player')
|
| 156 |
-
non_qb_stats_disp = non_qb_stats_disp.sort_values(by='PPR', ascending=False)
|
| 157 |
-
st.dataframe(non_qb_stats_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 158 |
-
st.download_button(
|
| 159 |
-
label="Export Prop Model",
|
| 160 |
-
data=convert_df_to_csv(non_qb_stats_disp),
|
| 161 |
-
file_name='NFL_nonqb_stats_export.csv',
|
| 162 |
-
mime='text/csv',
|
| 163 |
-
key='hitter_prop_export',
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
with tab4:
|
| 167 |
st.info(t_stamp)
|
| 168 |
if st.button("Reset Data", key='reset4'):
|
| 169 |
st.cache_data.clear()
|
| 170 |
-
game_model =
|
| 171 |
-
|
| 172 |
-
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 173 |
-
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 174 |
-
prop_frame = player_prop_table()
|
| 175 |
-
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
| 176 |
col1, col2 = st.columns([1, 5])
|
| 177 |
|
| 178 |
with col2:
|
|
@@ -181,31 +132,30 @@ with tab4:
|
|
| 181 |
plot_hold_container = st.empty()
|
| 182 |
|
| 183 |
with col1:
|
| 184 |
-
player_check = st.selectbox('Select player to simulate props', options =
|
| 185 |
-
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['
|
|
|
|
| 186 |
|
| 187 |
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
|
| 188 |
-
if prop_type_var == '
|
| 189 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value =
|
| 190 |
-
elif prop_type_var == '
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
| 192 |
-
elif prop_type_var == '
|
| 193 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 155.5, value = 25.5, step = .5)
|
| 194 |
-
elif prop_type_var == 'Rush TDs':
|
| 195 |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
| 196 |
-
elif prop_type_var == '
|
| 197 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value =
|
| 198 |
-
elif prop_type_var == '
|
| 199 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value =
|
| 200 |
-
elif prop_type_var == '
|
| 201 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value =
|
| 202 |
-
elif prop_type_var == '
|
| 203 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value =
|
| 204 |
-
|
| 205 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
|
| 206 |
-
elif prop_type_var == 'PrizePicks':
|
| 207 |
-
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 10.5, step = .5)
|
| 208 |
-
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1000, max_value = 1000, value = -150, step = 1)
|
| 209 |
line_var = line_var + 1
|
| 210 |
|
| 211 |
if st.button('Simulate Prop'):
|
|
@@ -213,7 +163,7 @@ with tab4:
|
|
| 213 |
|
| 214 |
with df_hold_container.container():
|
| 215 |
|
| 216 |
-
df =
|
| 217 |
|
| 218 |
total_sims = 5000
|
| 219 |
|
|
@@ -222,31 +172,29 @@ with tab4:
|
|
| 222 |
player_var = df.loc[df['Player'] == player_check]
|
| 223 |
player_var = player_var.reset_index()
|
| 224 |
|
| 225 |
-
if prop_type_var == '
|
| 226 |
-
df['Median'] = df['
|
| 227 |
-
elif prop_type_var == '
|
| 228 |
-
df['Median'] = df['
|
| 229 |
-
elif prop_type_var == '
|
| 230 |
-
df['Median'] = df['
|
| 231 |
-
elif prop_type_var == '
|
| 232 |
-
df['Median'] = df['
|
| 233 |
-
elif prop_type_var == '
|
| 234 |
-
df['Median'] = df['
|
| 235 |
-
elif prop_type_var == '
|
| 236 |
-
df['Median'] = df['
|
| 237 |
-
elif prop_type_var == '
|
| 238 |
-
df['Median'] = df['
|
| 239 |
-
elif prop_type_var == '
|
| 240 |
-
df['Median'] = df['
|
| 241 |
-
elif prop_type_var == '
|
| 242 |
-
df['Median'] = df['
|
| 243 |
-
elif prop_type_var == 'PrizePicks':
|
| 244 |
-
df['Median'] = df['Half_PPF']
|
| 245 |
|
| 246 |
flex_file = df
|
| 247 |
-
flex_file['Floor'] = flex_file['Median'] * .
|
| 248 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['
|
| 249 |
-
flex_file['STD'] = flex_file['Median']
|
| 250 |
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 251 |
|
| 252 |
hold_file = flex_file
|
|
@@ -310,17 +258,13 @@ with tab4:
|
|
| 310 |
plot_hold_container = st.empty()
|
| 311 |
st.plotly_chart(fig, use_container_width=True)
|
| 312 |
|
| 313 |
-
with
|
| 314 |
st.info(t_stamp)
|
| 315 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 316 |
if st.button("Reset Data/Load Data", key='reset5'):
|
| 317 |
st.cache_data.clear()
|
| 318 |
-
game_model =
|
| 319 |
-
|
| 320 |
-
qb_stats = overall_stats.loc[overall_stats['Position'] == 'QB']
|
| 321 |
-
non_qb_stats = overall_stats.loc[overall_stats['Position'] != 'QB']
|
| 322 |
-
prop_frame = player_prop_table()
|
| 323 |
-
t_stamp = f"Last Update: " + str(prop_frame['timestamp'][0]) + f" CST"
|
| 324 |
col1, col2 = st.columns([1, 5])
|
| 325 |
|
| 326 |
with col2:
|
|
@@ -330,63 +274,111 @@ with tab5:
|
|
| 330 |
export_container = st.empty()
|
| 331 |
|
| 332 |
with col1:
|
| 333 |
-
prop_type_var = st.selectbox('Select prop category', options = ['
|
| 334 |
|
| 335 |
if st.button('Simulate Prop Category'):
|
| 336 |
with col2:
|
| 337 |
|
| 338 |
with df_hold_container.container():
|
| 339 |
|
| 340 |
-
if prop_type_var == "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 341 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 342 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
| 343 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 344 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 345 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 346 |
st.table(prop_df)
|
| 347 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 348 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 349 |
-
df = pd.merge(
|
| 350 |
-
elif prop_type_var == "
|
| 351 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 352 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
| 353 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 354 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 355 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 356 |
st.table(prop_df)
|
| 357 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 358 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 359 |
-
df = pd.merge(
|
| 360 |
-
elif prop_type_var == "
|
| 361 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 362 |
-
prop_df = prop_df.loc[prop_df['prop_type'] == '
|
| 363 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 364 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 365 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 366 |
st.table(prop_df)
|
| 367 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 368 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 369 |
-
df = pd.merge(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 372 |
over_dict = dict(zip(df.Player, df.Over))
|
| 373 |
under_dict = dict(zip(df.Player, df.Under))
|
| 374 |
|
| 375 |
-
total_sims =
|
| 376 |
|
| 377 |
df.replace("", 0, inplace=True)
|
| 378 |
|
| 379 |
-
if prop_type_var ==
|
| 380 |
-
df['Median'] = df['
|
| 381 |
-
elif prop_type_var ==
|
| 382 |
-
df['Median'] = df['
|
| 383 |
-
elif prop_type_var ==
|
| 384 |
-
df['Median'] = df['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
flex_file = df
|
| 387 |
-
flex_file['Floor'] = flex_file['Median'] * .
|
| 388 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['
|
| 389 |
-
flex_file['STD'] = flex_file['Median']
|
| 390 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 391 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 392 |
|
|
@@ -448,7 +440,7 @@ with tab5:
|
|
| 448 |
st.download_button(
|
| 449 |
label="Export Projections",
|
| 450 |
data=convert_df_to_csv(final_outcomes),
|
| 451 |
-
file_name='
|
| 452 |
mime='text/csv',
|
| 453 |
key='prop_proj',
|
| 454 |
)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(layout="wide")
|
| 3 |
+
|
| 4 |
+
for name in dir():
|
| 5 |
+
if not name.startswith('_'):
|
| 6 |
+
del globals()[name]
|
| 7 |
+
|
| 8 |
import numpy as np
|
| 9 |
import pandas as pd
|
| 10 |
import streamlit as st
|
| 11 |
import gspread
|
| 12 |
import plotly.express as px
|
| 13 |
+
import random
|
| 14 |
+
import gc
|
| 15 |
+
|
| 16 |
+
@st.cache_resource
|
| 17 |
+
def init_conn():
|
| 18 |
+
scope = ['https://www.googleapis.com/auth/spreadsheets',
|
| 19 |
+
"https://www.googleapis.com/auth/drive"]
|
| 20 |
+
|
| 21 |
+
credentials = {
|
| 22 |
+
"type": "service_account",
|
| 23 |
+
"project_id": "model-sheets-connect",
|
| 24 |
+
"private_key_id": "0e0bc2fdef04e771172fe5807392b9d6639d945e",
|
| 25 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
|
| 26 |
+
"client_email": "gspread-connection@model-sheets-connect.iam.gserviceaccount.com",
|
| 27 |
+
"client_id": "100369174533302798535",
|
| 28 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
| 29 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
| 30 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
| 31 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
gc_con = gspread.service_account_from_dict(credentials)
|
| 35 |
+
|
| 36 |
+
return gc_con
|
| 37 |
+
|
| 38 |
+
gcservice_account = init_conn()
|
| 39 |
+
|
| 40 |
+
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
|
| 41 |
+
|
| 42 |
+
@st.cache_resource(ttl = 300)
|
| 43 |
+
def init_baselines():
|
| 44 |
sh = gc.open_by_url(master_hold)
|
| 45 |
+
worksheet = sh.worksheet('Betting Model Clean')
|
| 46 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 47 |
raw_display.replace('#DIV/0!', np.nan, inplace=True)
|
| 48 |
+
game_model = raw_display.dropna()
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
worksheet = sh.worksheet('DK_Build_Up')
|
|
|
|
|
|
|
|
|
|
| 51 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 52 |
raw_display.replace('', np.nan, inplace=True)
|
| 53 |
+
player_stats = raw_display.dropna()
|
| 54 |
+
|
| 55 |
+
worksheet = sh.worksheet('Timestamp')
|
| 56 |
+
timestamp = worksheet.acell('A1').value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
worksheet = sh.worksheet('Prop_Frame')
|
|
|
|
|
|
|
|
|
|
| 59 |
raw_display = pd.DataFrame(worksheet.get_all_records())
|
| 60 |
raw_display.replace('', np.nan, inplace=True)
|
| 61 |
+
prop_frame = raw_display.dropna()
|
| 62 |
|
| 63 |
+
return game_model, player_stats, prop_frame, timestamp
|
| 64 |
|
| 65 |
+
def convert_df_to_csv(df):
|
| 66 |
+
return df.to_csv().encode('utf-8')
|
| 67 |
+
|
| 68 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
|
|
|
|
|
|
| 69 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 70 |
|
| 71 |
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "QB Projections", "RB/WR/TE Projections", "Player Prop Simulations", "Stat Specific Simulations"])
|
| 72 |
|
|
|
|
|
|
|
|
|
|
| 73 |
with tab1:
|
| 74 |
st.info(t_stamp)
|
| 75 |
if st.button("Reset Data", key='reset1'):
|
| 76 |
st.cache_data.clear()
|
| 77 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 78 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
line_var1 = st.radio('How would you like to display odds?', options = ['Percentage', 'American'], key='line_var1')
|
| 80 |
team_frame = game_model
|
| 81 |
if line_var1 == 'Percentage':
|
| 82 |
+
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Win%']]
|
| 83 |
+
team_frame = team_frame.set_index('Team')
|
| 84 |
+
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 85 |
if line_var1 == 'American':
|
| 86 |
+
team_frame = team_frame[['Team', 'Opp', 'Team Points', 'Opp Points', 'Proj Total', 'Proj Spread', 'Proj Winner', 'Odds Line']]
|
| 87 |
+
team_frame = team_frame.set_index('Team')
|
| 88 |
st.dataframe(team_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 89 |
|
| 90 |
st.download_button(
|
| 91 |
label="Export Team Model",
|
| 92 |
data=convert_df_to_csv(team_frame),
|
| 93 |
+
file_name='NBA_team_betting_export.csv',
|
| 94 |
mime='text/csv',
|
| 95 |
key='team_export',
|
| 96 |
)
|
|
|
|
| 99 |
st.info(t_stamp)
|
| 100 |
if st.button("Reset Data", key='reset2'):
|
| 101 |
st.cache_data.clear()
|
| 102 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 103 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
split_var1 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var1')
|
| 105 |
if split_var1 == 'Specific Teams':
|
| 106 |
+
team_var1 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var1')
|
| 107 |
elif split_var1 == 'All':
|
| 108 |
+
team_var1 = player_stats.Team.values.tolist()
|
| 109 |
+
player_stats = player_stats[player_stats['Team'].isin(team_var1)]
|
| 110 |
+
player_stats = player_stats.set_index('Player')
|
| 111 |
+
player_stats = player_stats.sort_values(by='Fantasy', ascending=False)
|
| 112 |
+
st.dataframe(player_stats.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 113 |
st.download_button(
|
| 114 |
label="Export Prop Model",
|
| 115 |
+
data=convert_df_to_csv(player_stats),
|
| 116 |
+
file_name='NBA_stats_export.csv',
|
| 117 |
mime='text/csv',
|
| 118 |
key='pitcher_prop_export',
|
| 119 |
)
|
| 120 |
+
|
| 121 |
with tab3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
st.info(t_stamp)
|
| 123 |
if st.button("Reset Data", key='reset4'):
|
| 124 |
st.cache_data.clear()
|
| 125 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 126 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
col1, col2 = st.columns([1, 5])
|
| 128 |
|
| 129 |
with col2:
|
|
|
|
| 132 |
plot_hold_container = st.empty()
|
| 133 |
|
| 134 |
with col1:
|
| 135 |
+
player_check = st.selectbox('Select player to simulate props', options = player_stats['Player'].unique())
|
| 136 |
+
prop_type_var = st.selectbox('Select type of prop to simulate', options = ['points', 'rebounds', 'assists', 'blocks', 'steals',
|
| 137 |
+
'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
|
| 138 |
|
| 139 |
ou_var = st.selectbox('Select wether it is an over or under', options = ['Over', 'Under'])
|
| 140 |
+
if prop_type_var == 'points':
|
| 141 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 50.5, value = 15.5, step = .5)
|
| 142 |
+
elif prop_type_var == 'rebounds':
|
| 143 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
|
| 144 |
+
elif prop_type_var == 'assists':
|
| 145 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 25.5, value = 5.5, step = .5)
|
| 146 |
+
elif prop_type_var == 'blocks':
|
| 147 |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
| 148 |
+
elif prop_type_var == 'steals':
|
|
|
|
|
|
|
| 149 |
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 5.5, value = 1.5, step = .5)
|
| 150 |
+
elif prop_type_var == 'PRA':
|
| 151 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 65.5, value = 20.5, step = .5)
|
| 152 |
+
elif prop_type_var == 'points+rebounds':
|
| 153 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
|
| 154 |
+
elif prop_type_var == 'points+assists':
|
| 155 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
|
| 156 |
+
elif prop_type_var == 'rebounds+assists':
|
| 157 |
+
prop_var = st.number_input('Type in the prop offered (i.e 5.5)', min_value = 0.0, max_value = 45.5, value = 10.5, step = .5)
|
| 158 |
+
line_var = st.number_input('Type in the line on the prop (i.e. -120)', min_value = -1500, max_value = 1500, value = -150, step = 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
line_var = line_var + 1
|
| 160 |
|
| 161 |
if st.button('Simulate Prop'):
|
|
|
|
| 163 |
|
| 164 |
with df_hold_container.container():
|
| 165 |
|
| 166 |
+
df = player_stats
|
| 167 |
|
| 168 |
total_sims = 5000
|
| 169 |
|
|
|
|
| 172 |
player_var = df.loc[df['Player'] == player_check]
|
| 173 |
player_var = player_var.reset_index()
|
| 174 |
|
| 175 |
+
if prop_type_var == 'points':
|
| 176 |
+
df['Median'] = df['Points']
|
| 177 |
+
elif prop_type_var == 'rebounds':
|
| 178 |
+
df['Median'] = df['Rebounds']
|
| 179 |
+
elif prop_type_var == 'assists':
|
| 180 |
+
df['Median'] = df['Assists']
|
| 181 |
+
elif prop_type_var == 'blocks':
|
| 182 |
+
df['Median'] = df['Blocks']
|
| 183 |
+
elif prop_type_var == 'steals':
|
| 184 |
+
df['Median'] = df['Steals']
|
| 185 |
+
elif prop_type_var == 'PRA':
|
| 186 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 187 |
+
elif prop_type_var == 'points+rebounds':
|
| 188 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 189 |
+
elif prop_type_var == 'points+assists':
|
| 190 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 191 |
+
elif prop_type_var == 'rebounds+assists':
|
| 192 |
+
df['Median'] = df['Assists'] + df['Rebounds']
|
|
|
|
|
|
|
| 193 |
|
| 194 |
flex_file = df
|
| 195 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
| 196 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
| 197 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
| 198 |
flex_file = flex_file[['Player', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 199 |
|
| 200 |
hold_file = flex_file
|
|
|
|
| 258 |
plot_hold_container = st.empty()
|
| 259 |
st.plotly_chart(fig, use_container_width=True)
|
| 260 |
|
| 261 |
+
with tab4:
|
| 262 |
st.info(t_stamp)
|
| 263 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 264 |
if st.button("Reset Data/Load Data", key='reset5'):
|
| 265 |
st.cache_data.clear()
|
| 266 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 267 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
col1, col2 = st.columns([1, 5])
|
| 269 |
|
| 270 |
with col2:
|
|
|
|
| 274 |
export_container = st.empty()
|
| 275 |
|
| 276 |
with col1:
|
| 277 |
+
prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'])
|
| 278 |
|
| 279 |
if st.button('Simulate Prop Category'):
|
| 280 |
with col2:
|
| 281 |
|
| 282 |
with df_hold_container.container():
|
| 283 |
|
| 284 |
+
if prop_type_var == "points":
|
| 285 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 286 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
|
| 287 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 288 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 289 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 290 |
+
st.table(prop_df)
|
| 291 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 292 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 293 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 294 |
+
elif prop_type_var == "rebounds":
|
| 295 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 296 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
|
| 297 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 298 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 299 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 300 |
+
st.table(prop_df)
|
| 301 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 302 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 303 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 304 |
+
elif prop_type_var == "assists":
|
| 305 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 306 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
|
| 307 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 308 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 309 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 310 |
+
st.table(prop_df)
|
| 311 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 312 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 313 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 314 |
+
elif prop_type_var == "PRA":
|
| 315 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 316 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
|
| 317 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 318 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 319 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 320 |
st.table(prop_df)
|
| 321 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 322 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 323 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 324 |
+
elif prop_type_var == "points+rebounds":
|
| 325 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 326 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
|
| 327 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 328 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 329 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 330 |
st.table(prop_df)
|
| 331 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 332 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 333 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 334 |
+
elif prop_type_var == "points+assists":
|
| 335 |
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 336 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
|
| 337 |
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 338 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 339 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 340 |
st.table(prop_df)
|
| 341 |
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 342 |
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 343 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 344 |
+
elif prop_type_var == "rebounds+assists":
|
| 345 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 346 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
|
| 347 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 348 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 349 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 350 |
+
st.table(prop_df)
|
| 351 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 352 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 353 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 354 |
|
| 355 |
prop_dict = dict(zip(df.Player, df.Prop))
|
| 356 |
over_dict = dict(zip(df.Player, df.Over))
|
| 357 |
under_dict = dict(zip(df.Player, df.Under))
|
| 358 |
|
| 359 |
+
total_sims = 5000
|
| 360 |
|
| 361 |
df.replace("", 0, inplace=True)
|
| 362 |
|
| 363 |
+
if prop_type_var == 'points':
|
| 364 |
+
df['Median'] = df['Points']
|
| 365 |
+
elif prop_type_var == 'rebounds':
|
| 366 |
+
df['Median'] = df['Rebounds']
|
| 367 |
+
elif prop_type_var == 'assists':
|
| 368 |
+
df['Median'] = df['Assists']
|
| 369 |
+
elif prop_type_var == 'PRA':
|
| 370 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 371 |
+
elif prop_type_var == 'points+rebounds':
|
| 372 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 373 |
+
elif prop_type_var == 'points+assists':
|
| 374 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 375 |
+
elif prop_type_var == 'rebounds+assists':
|
| 376 |
+
df['Median'] = df['Assists'] + df['Rebounds']
|
| 377 |
|
| 378 |
flex_file = df
|
| 379 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
| 380 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
| 381 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
| 382 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 383 |
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 384 |
|
|
|
|
| 440 |
st.download_button(
|
| 441 |
label="Export Projections",
|
| 442 |
data=convert_df_to_csv(final_outcomes),
|
| 443 |
+
file_name='Nba_prop_proj.csv',
|
| 444 |
mime='text/csv',
|
| 445 |
key='prop_proj',
|
| 446 |
)
|