Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -43,6 +43,8 @@ game_format = {'Win%': '{:.2%}'}
|
|
| 43 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
| 44 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
| 45 |
prop_table_options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals', 'PRA', 'PR', 'PA', 'PR']
|
|
|
|
|
|
|
| 46 |
|
| 47 |
@st.cache_resource(ttl = 300)
|
| 48 |
def init_baselines():
|
|
@@ -309,158 +311,250 @@ with tab5:
|
|
| 309 |
export_container = st.empty()
|
| 310 |
|
| 311 |
with col1:
|
| 312 |
-
prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists'
|
|
|
|
| 313 |
|
| 314 |
if st.button('Simulate Prop Category'):
|
| 315 |
with col2:
|
| 316 |
with df_hold_container.container():
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 464 |
|
| 465 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 466 |
|
|
|
|
| 43 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
| 44 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
| 45 |
prop_table_options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals', 'PRA', 'PR', 'PA', 'PR']
|
| 46 |
+
all_sim_vars = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists']
|
| 47 |
+
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge'])
|
| 48 |
|
| 49 |
@st.cache_resource(ttl = 300)
|
| 50 |
def init_baselines():
|
|
|
|
| 311 |
export_container = st.empty()
|
| 312 |
|
| 313 |
with col1:
|
| 314 |
+
prop_type_var = st.selectbox('Select prop category', options = ['points', 'rebounds', 'assists', 'PRA', 'points+rebounds', 'points+assists', 'rebounds+assists',
|
| 315 |
+
'Sim all'])
|
| 316 |
|
| 317 |
if st.button('Simulate Prop Category'):
|
| 318 |
with col2:
|
| 319 |
with df_hold_container.container():
|
| 320 |
+
if prop_type_var == 'Sim all':
|
| 321 |
+
for prop in all_sim_vars:
|
| 322 |
+
|
| 323 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 324 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
| 325 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 326 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 327 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 328 |
+
st.table(prop_df)
|
| 329 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 330 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 331 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 332 |
+
|
| 333 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
| 334 |
+
over_dict = dict(zip(df.Player, df.Over))
|
| 335 |
+
under_dict = dict(zip(df.Player, df.Under))
|
| 336 |
+
|
| 337 |
+
total_sims = 5000
|
| 338 |
+
|
| 339 |
+
df.replace("", 0, inplace=True)
|
| 340 |
+
|
| 341 |
+
if prop == 'points':
|
| 342 |
+
df['Median'] = df['Points']
|
| 343 |
+
elif prop == 'rebounds':
|
| 344 |
+
df['Median'] = df['Rebounds']
|
| 345 |
+
elif prop == 'assists':
|
| 346 |
+
df['Median'] = df['Assists']
|
| 347 |
+
elif prop == 'PRA':
|
| 348 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 349 |
+
elif prop == 'points+rebounds':
|
| 350 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 351 |
+
elif prop == 'points+assists':
|
| 352 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 353 |
+
elif prop == 'rebounds+assists':
|
| 354 |
+
df['Median'] = df['Assists'] + df['Rebounds']
|
| 355 |
+
|
| 356 |
+
flex_file = df
|
| 357 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
| 358 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
| 359 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
| 360 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 361 |
+
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 362 |
+
|
| 363 |
+
hold_file = flex_file
|
| 364 |
+
overall_file = flex_file
|
| 365 |
+
prop_file = flex_file
|
| 366 |
+
|
| 367 |
+
overall_players = overall_file[['Player']]
|
| 368 |
+
|
| 369 |
+
for x in range(0,total_sims):
|
| 370 |
+
prop_file[x] = prop_file['Prop']
|
| 371 |
+
|
| 372 |
+
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 373 |
+
|
| 374 |
+
for x in range(0,total_sims):
|
| 375 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 376 |
+
|
| 377 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 378 |
+
|
| 379 |
+
players_only = hold_file[['Player']]
|
| 380 |
+
|
| 381 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 382 |
+
|
| 383 |
+
prop_check = (overall_file - prop_file)
|
| 384 |
+
|
| 385 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 386 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 387 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 388 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 389 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 390 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 391 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 392 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 393 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 394 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 395 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 396 |
+
players_only['prop_threshold'] = .10
|
| 397 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 398 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 399 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 400 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 401 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 402 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 403 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 404 |
+
|
| 405 |
+
players_only['Player'] = hold_file[['Player']]
|
| 406 |
+
|
| 407 |
+
leg_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 408 |
+
|
| 409 |
+
final_outcomes = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 410 |
+
|
| 411 |
+
elif prop_type_var != 'Sim all':
|
| 412 |
+
if prop_type_var == "points":
|
| 413 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 414 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points']
|
| 415 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 416 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 417 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 418 |
+
st.table(prop_df)
|
| 419 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 420 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 421 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 422 |
+
elif prop_type_var == "rebounds":
|
| 423 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 424 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds']
|
| 425 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 426 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 427 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 428 |
+
st.table(prop_df)
|
| 429 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 430 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 431 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 432 |
+
elif prop_type_var == "assists":
|
| 433 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 434 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'assists']
|
| 435 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 436 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 437 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 438 |
+
st.table(prop_df)
|
| 439 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 440 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 441 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 442 |
+
elif prop_type_var == "PRA":
|
| 443 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 444 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'PRA']
|
| 445 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 446 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 447 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 448 |
+
st.table(prop_df)
|
| 449 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 450 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 451 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 452 |
+
elif prop_type_var == "points+rebounds":
|
| 453 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 454 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+rebounds']
|
| 455 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 456 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 457 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 458 |
+
st.table(prop_df)
|
| 459 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 460 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 461 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 462 |
+
elif prop_type_var == "points+assists":
|
| 463 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 464 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'points+assists']
|
| 465 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 466 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 467 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 468 |
+
st.table(prop_df)
|
| 469 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 470 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 471 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 472 |
+
elif prop_type_var == "rebounds+assists":
|
| 473 |
+
prop_df = prop_frame[['Player', 'over_prop', 'over_line', 'under_line', 'prop_type']]
|
| 474 |
+
prop_df = prop_df.loc[prop_df['prop_type'] == 'rebounds+assists']
|
| 475 |
+
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
| 476 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 477 |
+
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
| 478 |
+
st.table(prop_df)
|
| 479 |
+
prop_df['Over'] = np.where(prop_df['over_line'] < 0, (-(prop_df['over_line'])/((-(prop_df['over_line']))+101)), 101/(prop_df['over_line']+101))
|
| 480 |
+
prop_df['Under'] = np.where(prop_df['under_line'] < 0, (-(prop_df['under_line'])/((-(prop_df['under_line']))+101)), 101/(prop_df['under_line']+101))
|
| 481 |
+
df = pd.merge(player_stats, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
| 482 |
+
|
| 483 |
+
prop_dict = dict(zip(df.Player, df.Prop))
|
| 484 |
+
over_dict = dict(zip(df.Player, df.Over))
|
| 485 |
+
under_dict = dict(zip(df.Player, df.Under))
|
| 486 |
+
|
| 487 |
+
total_sims = 5000
|
| 488 |
+
|
| 489 |
+
df.replace("", 0, inplace=True)
|
| 490 |
+
|
| 491 |
+
if prop_type_var == 'points':
|
| 492 |
+
df['Median'] = df['Points']
|
| 493 |
+
elif prop_type_var == 'rebounds':
|
| 494 |
+
df['Median'] = df['Rebounds']
|
| 495 |
+
elif prop_type_var == 'assists':
|
| 496 |
+
df['Median'] = df['Assists']
|
| 497 |
+
elif prop_type_var == 'PRA':
|
| 498 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 499 |
+
elif prop_type_var == 'points+rebounds':
|
| 500 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 501 |
+
elif prop_type_var == 'points+assists':
|
| 502 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 503 |
+
elif prop_type_var == 'rebounds+assists':
|
| 504 |
+
df['Median'] = df['Assists'] + df['Rebounds']
|
| 505 |
+
|
| 506 |
+
flex_file = df
|
| 507 |
+
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25)
|
| 508 |
+
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25)
|
| 509 |
+
flex_file['STD'] = (flex_file['Median']/4)
|
| 510 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 511 |
+
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 512 |
+
|
| 513 |
+
hold_file = flex_file
|
| 514 |
+
overall_file = flex_file
|
| 515 |
+
prop_file = flex_file
|
| 516 |
+
|
| 517 |
+
overall_players = overall_file[['Player']]
|
| 518 |
+
|
| 519 |
+
for x in range(0,total_sims):
|
| 520 |
+
prop_file[x] = prop_file['Prop']
|
| 521 |
+
|
| 522 |
+
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 523 |
+
|
| 524 |
+
for x in range(0,total_sims):
|
| 525 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 526 |
+
|
| 527 |
+
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 528 |
+
|
| 529 |
+
players_only = hold_file[['Player']]
|
| 530 |
+
|
| 531 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 532 |
+
|
| 533 |
+
prop_check = (overall_file - prop_file)
|
| 534 |
+
|
| 535 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 536 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 537 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 538 |
+
players_only['Over'] = prop_check[prop_check > 0].count(axis=1)/float(total_sims)
|
| 539 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 540 |
+
players_only['Over%'] = players_only[["Over", "Imp Over"]].mean(axis=1)
|
| 541 |
+
players_only['Under'] = prop_check[prop_check < 0].count(axis=1)/float(total_sims)
|
| 542 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 543 |
+
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
| 544 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 545 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 546 |
+
players_only['prop_threshold'] = .10
|
| 547 |
+
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
| 548 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 549 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 550 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 551 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 552 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 553 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 554 |
+
|
| 555 |
+
players_only['Player'] = hold_file[['Player']]
|
| 556 |
+
|
| 557 |
+
final_outcomes = players_only[['Player', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
| 558 |
|
| 559 |
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 560 |
|