Spaces:
Running
Running
James McCool
commited on
Commit
·
b3b3746
1
Parent(s):
1210272
Enhance NBA player prop simulation interface by restructuring layout and adding new settings container. Introduced 'Imp Over' and 'Imp Under' metrics for improved analysis, and refined data handling for prop categories. Updated DataFrame calculations to streamline simulation processes and ensure accurate projections.
Browse files
app.py
CHANGED
|
@@ -65,6 +65,7 @@ gcservice_account, gcservice_account2, db, prop_db, NBA_Data = init_conn()
|
|
| 65 |
game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
|
| 66 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
| 67 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
|
|
|
| 68 |
prop_table_options = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 69 |
all_sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 70 |
pick6_sim_vars = ['Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds']
|
|
@@ -461,332 +462,334 @@ with tab6:
|
|
| 461 |
st.cache_data.clear()
|
| 462 |
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
| 463 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
export_container = st.empty()
|
| 471 |
|
| 472 |
-
with
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
flex_file = df.copy()
|
| 562 |
-
flex_file['Floor'] = flex_file['Median'] * .25
|
| 563 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 564 |
-
flex_file['STD'] = flex_file['Median'] / 4
|
| 565 |
-
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 566 |
-
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 567 |
-
|
| 568 |
-
hold_file = flex_file.copy()
|
| 569 |
-
overall_file = flex_file.copy()
|
| 570 |
-
prop_file = flex_file.copy()
|
| 571 |
-
|
| 572 |
-
overall_players = overall_file[['Player']]
|
| 573 |
-
|
| 574 |
-
for x in range(0,total_sims):
|
| 575 |
-
prop_file[x] = prop_file['Prop']
|
| 576 |
-
|
| 577 |
-
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 578 |
-
|
| 579 |
-
for x in range(0,total_sims):
|
| 580 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 581 |
-
|
| 582 |
-
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 583 |
-
|
| 584 |
-
players_only = hold_file[['Player']]
|
| 585 |
-
|
| 586 |
-
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 587 |
-
|
| 588 |
-
prop_check = (overall_file - prop_file)
|
| 589 |
-
|
| 590 |
-
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 591 |
-
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 592 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 593 |
-
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
| 594 |
-
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
| 595 |
-
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
| 596 |
-
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 597 |
-
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 598 |
-
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
| 599 |
-
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 600 |
-
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
|
| 601 |
-
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
| 602 |
-
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 603 |
-
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
|
| 604 |
-
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 605 |
-
players_only['prop_threshold'] = .10
|
| 606 |
-
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
| 607 |
-
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 608 |
-
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 609 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 610 |
-
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 611 |
-
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 612 |
-
players_only['Edge'] = players_only['Bet_check']
|
| 613 |
-
players_only['Prop Type'] = prop
|
| 614 |
-
|
| 615 |
-
players_only['Player'] = hold_file[['Player']]
|
| 616 |
-
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 617 |
-
|
| 618 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
| 619 |
-
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 620 |
-
|
| 621 |
-
final_outcomes = sim_all_hold
|
| 622 |
-
st.write(f'finished {prop} for {books}')
|
| 623 |
-
|
| 624 |
-
elif prop_type_var != 'All Props':
|
| 625 |
-
|
| 626 |
-
player_df = player_stats.copy()
|
| 627 |
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
elif prop_type_var == "Points":
|
| 639 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Points']
|
| 640 |
-
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
|
| 641 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
|
| 642 |
-
elif prop_type_var == "Rebounds":
|
| 643 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Rebounds']
|
| 644 |
-
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
|
| 645 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
|
| 646 |
-
elif prop_type_var == "Assists":
|
| 647 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Assists']
|
| 648 |
-
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
|
| 649 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
|
| 650 |
-
elif prop_type_var == "3-Pointers Made":
|
| 651 |
-
prop_df = prop_df[prop_df['prop_type'] == '3-Pointers Made']
|
| 652 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
|
| 653 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
|
| 654 |
-
elif prop_type_var == "Points + Assists + Rebounds":
|
| 655 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists + Rebounds']
|
| 656 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
|
| 657 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
|
| 658 |
-
elif prop_type_var == "Points + Rebounds":
|
| 659 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Points + Rebounds']
|
| 660 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
|
| 661 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
|
| 662 |
-
elif prop_type_var == "Points + Assists":
|
| 663 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists']
|
| 664 |
-
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
|
| 665 |
-
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 666 |
-
elif prop_type_var == "Assists + Rebounds":
|
| 667 |
-
prop_df = prop_df[prop_df['prop_type'] == 'Assists + Rebounds']
|
| 668 |
-
|
| 669 |
-
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 670 |
-
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
| 671 |
-
prop_df['Over'] = 1 / prop_df['over_line']
|
| 672 |
-
prop_df['Under'] = 1 / prop_df['under_line']
|
| 673 |
-
|
| 674 |
-
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
| 675 |
-
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
| 676 |
-
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
| 677 |
-
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
| 678 |
-
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
| 679 |
-
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
|
| 680 |
-
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
|
| 681 |
-
|
| 682 |
-
player_df['book'] = player_df['Player'].map(book_dict)
|
| 683 |
-
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
| 684 |
-
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
| 685 |
-
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
|
| 686 |
-
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
|
| 687 |
-
|
| 688 |
-
df = player_df.reset_index(drop=True)
|
| 689 |
-
|
| 690 |
-
team_dict = dict(zip(df.Player, df.Team))
|
| 691 |
-
|
| 692 |
-
total_sims = 1000
|
| 693 |
-
|
| 694 |
-
df.replace("", 0, inplace=True)
|
| 695 |
-
|
| 696 |
-
if prop_type_var == "NBA_GAME_PLAYER_POINTS" or prop_type_var == "Points":
|
| 697 |
-
df['Median'] = df['Points']
|
| 698 |
-
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS" or prop_type_var == "Rebounds":
|
| 699 |
-
df['Median'] = df['Rebounds']
|
| 700 |
-
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS" or prop_type_var == "Assists":
|
| 701 |
-
df['Median'] = df['Assists']
|
| 702 |
-
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop_type_var == "3-Pointers Made":
|
| 703 |
-
df['Median'] = df['3P']
|
| 704 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop_type_var == "Points + Assists + Rebounds":
|
| 705 |
-
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 706 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop_type_var == "Points + Rebounds":
|
| 707 |
-
df['Median'] = df['Points'] + df['Rebounds']
|
| 708 |
-
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop_type_var == "Points + Assists":
|
| 709 |
-
df['Median'] = df['Points'] + df['Assists']
|
| 710 |
-
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop_type_var == "Assists + Rebounds":
|
| 711 |
-
df['Median'] = df['Rebounds'] + df['Assists']
|
| 712 |
-
|
| 713 |
-
flex_file = df.copy()
|
| 714 |
-
flex_file['Floor'] = flex_file['Median'] * .25
|
| 715 |
-
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 716 |
-
flex_file['STD'] = flex_file['Median'] / 4
|
| 717 |
-
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 718 |
-
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 719 |
-
|
| 720 |
-
hold_file = flex_file.copy()
|
| 721 |
-
overall_file = flex_file.copy()
|
| 722 |
-
prop_file = flex_file.copy()
|
| 723 |
-
|
| 724 |
-
overall_players = overall_file[['Player']]
|
| 725 |
-
|
| 726 |
-
for x in range(0,total_sims):
|
| 727 |
-
prop_file[x] = prop_file['Prop']
|
| 728 |
-
|
| 729 |
-
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 730 |
-
|
| 731 |
-
for x in range(0,total_sims):
|
| 732 |
-
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 733 |
-
|
| 734 |
-
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 735 |
-
|
| 736 |
-
players_only = hold_file[['Player']]
|
| 737 |
-
|
| 738 |
-
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 739 |
-
|
| 740 |
-
prop_check = (overall_file - prop_file)
|
| 741 |
-
|
| 742 |
-
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 743 |
-
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 744 |
-
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 745 |
-
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
| 746 |
-
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
| 747 |
-
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
| 748 |
-
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 749 |
-
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 750 |
-
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
| 751 |
-
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 752 |
-
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
|
| 753 |
-
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
| 754 |
-
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 755 |
-
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
|
| 756 |
-
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 757 |
-
players_only['prop_threshold'] = .10
|
| 758 |
-
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
| 759 |
-
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 760 |
-
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 761 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 762 |
-
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 763 |
-
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 764 |
-
players_only['Edge'] = players_only['Bet_check']
|
| 765 |
-
players_only['Prop Type'] = prop_type_var
|
| 766 |
-
|
| 767 |
-
players_only['Player'] = hold_file[['Player']]
|
| 768 |
-
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 769 |
-
|
| 770 |
-
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
| 771 |
-
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 772 |
|
| 773 |
-
|
| 774 |
-
st.write(f'finished {prop_type_var} for {books}')
|
| 775 |
-
|
| 776 |
-
final_outcomes = final_outcomes.dropna()
|
| 777 |
-
if game_select_var == 'Pick6':
|
| 778 |
-
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
|
| 779 |
-
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 780 |
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
game_format = {'Paydirt Win%': '{:.2%}', 'Vegas Win%': '{:.2%}'}
|
| 66 |
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
| 67 |
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
| 68 |
+
sim_format = {'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}', 'Imp Over': '{:.2%}', 'Imp Under': '{:.2%}', 'Over%': '{:.2%}', 'Under%': '{:.2%}', 'Edge': '{:.2%}'}
|
| 69 |
prop_table_options = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 70 |
all_sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 71 |
pick6_sim_vars = ['Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds']
|
|
|
|
| 462 |
st.cache_data.clear()
|
| 463 |
game_model, raw_baselines, player_stats, prop_frame, pick_frame, market_props, timestamp = init_baselines()
|
| 464 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 465 |
+
|
| 466 |
+
df_hold_container = st.empty()
|
| 467 |
+
info_hold_container = st.empty()
|
| 468 |
+
plot_hold_container = st.empty()
|
| 469 |
+
export_container = st.empty()
|
| 470 |
+
settings_container = st.empty()
|
|
|
|
| 471 |
|
| 472 |
+
with settings_container.container():
|
| 473 |
+
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
|
| 474 |
+
with col1:
|
| 475 |
+
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
|
| 476 |
+
with col2:
|
| 477 |
+
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
|
| 478 |
+
if book_select_var == 'ALL':
|
| 479 |
+
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
|
| 480 |
+
else:
|
| 481 |
+
book_selections = [book_select_var]
|
| 482 |
+
if game_select_var == 'Aggregate':
|
| 483 |
+
prop_df = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 484 |
+
elif game_select_var == 'Pick6':
|
| 485 |
+
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 486 |
+
book_selections = ['Pick6']
|
| 487 |
+
with col3:
|
| 488 |
+
if game_select_var == 'Aggregate':
|
| 489 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS',
|
| 490 |
+
'NBA_GAME_PLAYER_POINTS_REBOUNDS', 'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE'])
|
| 491 |
+
elif game_select_var == 'Pick6':
|
| 492 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds', '3-Pointers Made'])
|
| 493 |
+
with col4:
|
| 494 |
+
st.download_button(
|
| 495 |
+
label="Download Prop Source",
|
| 496 |
+
data=convert_df_to_csv(prop_df),
|
| 497 |
+
file_name='Nba_prop_source.csv',
|
| 498 |
+
mime='text/csv',
|
| 499 |
+
key='prop_source',
|
| 500 |
+
)
|
| 501 |
+
if st.button('Simulate Prop Category'):
|
| 502 |
|
| 503 |
+
with df_hold_container.container():
|
| 504 |
+
if prop_type_var == 'All Props':
|
| 505 |
+
if game_select_var == 'Aggregate':
|
| 506 |
+
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 507 |
+
sim_vars = ['NBA_GAME_PLAYER_POINTS', 'NBA_GAME_PLAYER_REBOUNDS', 'NBA_GAME_PLAYER_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_POINTS_REBOUNDS',
|
| 508 |
+
'NBA_GAME_PLAYER_POINTS_ASSISTS', 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS', 'NBA_GAME_PLAYER_3_POINTERS_MADE']
|
| 509 |
+
elif game_select_var == 'Pick6':
|
| 510 |
+
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 511 |
+
sim_vars = ['Points', 'Rebounds', 'Assists', 'Points + Assists + Rebounds', 'Points + Assists', 'Points + Rebounds', 'Assists + Rebounds', '3-Pointers Made']
|
| 512 |
+
|
| 513 |
+
player_df = player_stats.copy()
|
| 514 |
+
|
| 515 |
+
for prop in sim_vars:
|
| 516 |
+
|
| 517 |
+
for books in book_selections:
|
| 518 |
+
prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
|
| 519 |
+
prop_df = prop_df[prop_df['book'] == books]
|
| 520 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 521 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
| 522 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 523 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 524 |
+
|
| 525 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
| 526 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
| 527 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
| 528 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
| 529 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
| 530 |
+
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
|
| 531 |
+
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
|
| 532 |
+
|
| 533 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
| 534 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
| 535 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
| 536 |
+
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
|
| 537 |
+
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
|
| 538 |
+
|
| 539 |
+
df = player_df.reset_index(drop=True)
|
| 540 |
+
|
| 541 |
+
team_dict = dict(zip(df.Player, df.Team))
|
| 542 |
+
|
| 543 |
+
total_sims = 1000
|
| 544 |
+
|
| 545 |
+
df.replace("", 0, inplace=True)
|
| 546 |
+
|
| 547 |
+
if prop == "NBA_GAME_PLAYER_POINTS" or prop == "Points":
|
| 548 |
+
df['Median'] = df['Points']
|
| 549 |
+
elif prop == "NBA_GAME_PLAYER_REBOUNDS" or prop == "Rebounds":
|
| 550 |
+
df['Median'] = df['Rebounds']
|
| 551 |
+
elif prop == "NBA_GAME_PLAYER_ASSISTS" or prop == "Assists":
|
| 552 |
+
df['Median'] = df['Assists']
|
| 553 |
+
elif prop == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop == "3-Pointers Made":
|
| 554 |
+
df['Median'] = df['3P']
|
| 555 |
+
elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop == "Points + Assists + Rebounds":
|
| 556 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 557 |
+
elif prop == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop == "Points + Rebounds":
|
| 558 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 559 |
+
elif prop == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop == "Points + Assists":
|
| 560 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 561 |
+
elif prop == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop == "Assists + Rebounds":
|
| 562 |
+
df['Median'] = df['Rebounds'] + df['Assists']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
|
| 564 |
+
flex_file = df.copy()
|
| 565 |
+
flex_file['Floor'] = flex_file['Median'] * .25
|
| 566 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 567 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
| 568 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 569 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 570 |
+
|
| 571 |
+
hold_file = flex_file.copy()
|
| 572 |
+
overall_file = flex_file.copy()
|
| 573 |
+
prop_file = flex_file.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
+
overall_players = overall_file[['Player']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 576 |
|
| 577 |
+
for x in range(0,total_sims):
|
| 578 |
+
prop_file[x] = prop_file['Prop']
|
| 579 |
+
|
| 580 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 581 |
+
|
| 582 |
+
for x in range(0,total_sims):
|
| 583 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 584 |
+
|
| 585 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 586 |
+
|
| 587 |
+
players_only = hold_file[['Player']]
|
| 588 |
+
|
| 589 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 590 |
+
|
| 591 |
+
prop_check = (overall_file - prop_file)
|
| 592 |
+
|
| 593 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 594 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 595 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 596 |
+
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
| 597 |
+
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
| 598 |
+
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
| 599 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 600 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 601 |
+
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
| 602 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 603 |
+
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
|
| 604 |
+
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
| 605 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 606 |
+
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
|
| 607 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 608 |
+
players_only['prop_threshold'] = .10
|
| 609 |
+
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
| 610 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 611 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 612 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 613 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 614 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 615 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 616 |
+
players_only['Prop Type'] = prop
|
| 617 |
+
|
| 618 |
+
players_only['Player'] = hold_file[['Player']]
|
| 619 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 620 |
+
|
| 621 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
| 622 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 623 |
+
|
| 624 |
+
final_outcomes = sim_all_hold
|
| 625 |
+
st.write(f'finished {prop} for {books}')
|
| 626 |
+
|
| 627 |
+
elif prop_type_var != 'All Props':
|
| 628 |
+
|
| 629 |
+
player_df = player_stats.copy()
|
| 630 |
+
|
| 631 |
+
if game_select_var == 'Aggregate':
|
| 632 |
+
prop_df_raw = prop_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 633 |
+
elif game_select_var == 'Pick6':
|
| 634 |
+
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 635 |
+
|
| 636 |
+
for books in book_selections:
|
| 637 |
+
prop_df = prop_df_raw[prop_df_raw['book'] == books]
|
| 638 |
+
|
| 639 |
+
if prop_type_var == "NBA_GAME_PLAYER_POINTS":
|
| 640 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS']
|
| 641 |
+
elif prop_type_var == "Points":
|
| 642 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Points']
|
| 643 |
+
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS":
|
| 644 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS']
|
| 645 |
+
elif prop_type_var == "Rebounds":
|
| 646 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Rebounds']
|
| 647 |
+
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS":
|
| 648 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_ASSISTS']
|
| 649 |
+
elif prop_type_var == "Assists":
|
| 650 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Assists']
|
| 651 |
+
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE":
|
| 652 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_3_POINTERS_MADE']
|
| 653 |
+
elif prop_type_var == "3-Pointers Made":
|
| 654 |
+
prop_df = prop_df[prop_df['prop_type'] == '3-Pointers Made']
|
| 655 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS":
|
| 656 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS']
|
| 657 |
+
elif prop_type_var == "Points + Assists + Rebounds":
|
| 658 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists + Rebounds']
|
| 659 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS":
|
| 660 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_REBOUNDS']
|
| 661 |
+
elif prop_type_var == "Points + Rebounds":
|
| 662 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Points + Rebounds']
|
| 663 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS":
|
| 664 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_POINTS_ASSISTS']
|
| 665 |
+
elif prop_type_var == "Points + Assists":
|
| 666 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Points + Assists']
|
| 667 |
+
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS":
|
| 668 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NBA_GAME_PLAYER_REBOUNDS_ASSISTS']
|
| 669 |
+
elif prop_type_var == "Assists + Rebounds":
|
| 670 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Assists + Rebounds']
|
| 671 |
+
|
| 672 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
| 673 |
+
prop_df = prop_df.rename(columns={"over_prop": "Prop"})
|
| 674 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
| 675 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
| 676 |
+
|
| 677 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
| 678 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
| 679 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
| 680 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
| 681 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
| 682 |
+
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
|
| 683 |
+
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
|
| 684 |
+
|
| 685 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
| 686 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
| 687 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
| 688 |
+
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
|
| 689 |
+
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
|
| 690 |
+
|
| 691 |
+
df = player_df.reset_index(drop=True)
|
| 692 |
+
|
| 693 |
+
team_dict = dict(zip(df.Player, df.Team))
|
| 694 |
+
|
| 695 |
+
total_sims = 1000
|
| 696 |
+
|
| 697 |
+
df.replace("", 0, inplace=True)
|
| 698 |
+
|
| 699 |
+
if prop_type_var == "NBA_GAME_PLAYER_POINTS" or prop_type_var == "Points":
|
| 700 |
+
df['Median'] = df['Points']
|
| 701 |
+
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS" or prop_type_var == "Rebounds":
|
| 702 |
+
df['Median'] = df['Rebounds']
|
| 703 |
+
elif prop_type_var == "NBA_GAME_PLAYER_ASSISTS" or prop_type_var == "Assists":
|
| 704 |
+
df['Median'] = df['Assists']
|
| 705 |
+
elif prop_type_var == "NBA_GAME_PLAYER_3_POINTERS_MADE" or prop_type_var == "3-Pointers Made":
|
| 706 |
+
df['Median'] = df['3P']
|
| 707 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS_ASSISTS" or prop_type_var == "Points + Assists + Rebounds":
|
| 708 |
+
df['Median'] = df['Points'] + df['Rebounds'] + df['Assists']
|
| 709 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_REBOUNDS" or prop_type_var == "Points + Rebounds":
|
| 710 |
+
df['Median'] = df['Points'] + df['Rebounds']
|
| 711 |
+
elif prop_type_var == "NBA_GAME_PLAYER_POINTS_ASSISTS" or prop_type_var == "Points + Assists":
|
| 712 |
+
df['Median'] = df['Points'] + df['Assists']
|
| 713 |
+
elif prop_type_var == "NBA_GAME_PLAYER_REBOUNDS_ASSISTS" or prop_type_var == "Assists + Rebounds":
|
| 714 |
+
df['Median'] = df['Rebounds'] + df['Assists']
|
| 715 |
+
|
| 716 |
+
flex_file = df.copy()
|
| 717 |
+
flex_file['Floor'] = flex_file['Median'] * .25
|
| 718 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1.75)
|
| 719 |
+
flex_file['STD'] = flex_file['Median'] / 4
|
| 720 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
| 721 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
| 722 |
+
|
| 723 |
+
hold_file = flex_file.copy()
|
| 724 |
+
overall_file = flex_file.copy()
|
| 725 |
+
prop_file = flex_file.copy()
|
| 726 |
+
|
| 727 |
+
overall_players = overall_file[['Player']]
|
| 728 |
+
|
| 729 |
+
for x in range(0,total_sims):
|
| 730 |
+
prop_file[x] = prop_file['Prop']
|
| 731 |
+
|
| 732 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 733 |
+
|
| 734 |
+
for x in range(0,total_sims):
|
| 735 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
| 736 |
+
|
| 737 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
| 738 |
+
|
| 739 |
+
players_only = hold_file[['Player']]
|
| 740 |
+
|
| 741 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
| 742 |
+
|
| 743 |
+
prop_check = (overall_file - prop_file)
|
| 744 |
+
|
| 745 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
| 746 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
| 747 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
| 748 |
+
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
| 749 |
+
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
| 750 |
+
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
| 751 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
| 752 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
| 753 |
+
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
| 754 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
| 755 |
+
players_only['Over%'] = players_only[["Over", "Imp Over", "Trending Over"]].mean(axis=1)
|
| 756 |
+
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
| 757 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
| 758 |
+
players_only['Under%'] = players_only[["Under", "Imp Under", "Trending Under"]].mean(axis=1)
|
| 759 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
| 760 |
+
players_only['prop_threshold'] = .10
|
| 761 |
+
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
| 762 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
| 763 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
| 764 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
| 765 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
| 766 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
| 767 |
+
players_only['Edge'] = players_only['Bet_check']
|
| 768 |
+
players_only['Prop Type'] = prop_type_var
|
| 769 |
+
|
| 770 |
+
players_only['Player'] = hold_file[['Player']]
|
| 771 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
| 772 |
+
|
| 773 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
| 774 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
| 775 |
+
|
| 776 |
+
final_outcomes = sim_all_hold
|
| 777 |
+
st.write(f'finished {prop_type_var} for {books}')
|
| 778 |
+
|
| 779 |
+
final_outcomes = final_outcomes.dropna()
|
| 780 |
+
if game_select_var == 'Pick6':
|
| 781 |
+
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
|
| 782 |
+
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
| 783 |
+
|
| 784 |
+
with df_hold_container:
|
| 785 |
+
df_hold_container = st.empty()
|
| 786 |
+
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(sim_format, precision=2), height=1000, use_container_width = True)
|
| 787 |
+
with export_container:
|
| 788 |
+
export_container = st.empty()
|
| 789 |
+
st.download_button(
|
| 790 |
+
label="Export Projections",
|
| 791 |
+
data=convert_df_to_csv(final_outcomes),
|
| 792 |
+
file_name='NBA_prop_proj.csv',
|
| 793 |
+
mime='text/csv',
|
| 794 |
+
key='prop_proj',
|
| 795 |
+
)
|