Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,6 +40,8 @@ gcservice_account = init_conn()
|
|
| 40 |
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
|
| 41 |
|
| 42 |
game_format = {'Win%': '{:.2%}'}
|
|
|
|
|
|
|
| 43 |
|
| 44 |
@st.cache_resource(ttl = 300)
|
| 45 |
def init_baselines():
|
|
@@ -73,7 +75,7 @@ def convert_df_to_csv(df):
|
|
| 73 |
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 74 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 75 |
|
| 76 |
-
tab1, tab2, tab3, tab4 = st.tabs(["Game Betting Model", "Player Projections", "Player Prop Simulations", "Stat Specific Simulations"])
|
| 77 |
|
| 78 |
with tab1:
|
| 79 |
st.info(t_stamp)
|
|
@@ -123,6 +125,30 @@ with tab2:
|
|
| 123 |
)
|
| 124 |
|
| 125 |
with tab3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
st.info(t_stamp)
|
| 127 |
if st.button("Reset Data", key='reset3'):
|
| 128 |
st.cache_data.clear()
|
|
@@ -266,7 +292,7 @@ with tab3:
|
|
| 266 |
plot_hold_container = st.empty()
|
| 267 |
st.plotly_chart(fig, use_container_width=True)
|
| 268 |
|
| 269 |
-
with
|
| 270 |
st.info(t_stamp)
|
| 271 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 272 |
if st.button("Reset Data/Load Data", key='reset5'):
|
|
|
|
| 40 |
master_hold = 'https://docs.google.com/spreadsheets/d/1Yq0vGriWK-bS79e-bD6_u9pqrYE6Yrlbb_wEkmH-ot0/edit#gid=853878325'
|
| 41 |
|
| 42 |
game_format = {'Win%': '{:.2%}'}
|
| 43 |
+
prop_format = {'L5 Success': '{:.2%}', 'L10 Success': '{:.2%}', 'L20 Success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}'}
|
| 44 |
+
prop_table_options = ['points', 'threes', 'rebounds', 'assists', 'blocks', 'steals']
|
| 45 |
|
| 46 |
@st.cache_resource(ttl = 300)
|
| 47 |
def init_baselines():
|
|
|
|
| 75 |
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 76 |
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 77 |
|
| 78 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Game Betting Model", "Player Projections", "Prop Trend Table", "Player Prop Simulations", "Stat Specific Simulations"])
|
| 79 |
|
| 80 |
with tab1:
|
| 81 |
st.info(t_stamp)
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
with tab3:
|
| 128 |
+
st.info(t_stamp)
|
| 129 |
+
if st.button("Reset Data", key='reset5'):
|
| 130 |
+
st.cache_data.clear()
|
| 131 |
+
game_model, player_stats, prop_frame, timestamp = init_baselines()
|
| 132 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
| 133 |
+
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
| 134 |
+
if split_var5 == 'Specific Teams':
|
| 135 |
+
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = player_stats['Team'].unique(), key='team_var5')
|
| 136 |
+
elif split_var5 == 'All':
|
| 137 |
+
team_var5 = player_stats.Team.values.tolist()
|
| 138 |
+
prop_type_var2 = st.selectbox('Select type of prop to simulate', options = prop_table_options, default = prop_table_options)
|
| 139 |
+
prop_frame = prop_frame[prop_frame['Team'].isin(team_var5)]
|
| 140 |
+
prop_frame = prop_frame[prop_frame['prop_type'].isin(prop_type_var2)]
|
| 141 |
+
prop_frame_disp = prop_frame.set_index('Player')
|
| 142 |
+
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
|
| 143 |
+
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
|
| 144 |
+
st.download_button(
|
| 145 |
+
label="Export Prop Trends Model",
|
| 146 |
+
data=convert_df_to_csv(prop_frame),
|
| 147 |
+
file_name='NBA_prop_trends_export.csv',
|
| 148 |
+
mime='text/csv',
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
with tab4:
|
| 152 |
st.info(t_stamp)
|
| 153 |
if st.button("Reset Data", key='reset3'):
|
| 154 |
st.cache_data.clear()
|
|
|
|
| 292 |
plot_hold_container = st.empty()
|
| 293 |
st.plotly_chart(fig, use_container_width=True)
|
| 294 |
|
| 295 |
+
with tab5:
|
| 296 |
st.info(t_stamp)
|
| 297 |
st.info('The Over and Under percentages are a compositve percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
| 298 |
if st.button("Reset Data/Load Data", key='reset5'):
|