Spaces:
Runtime error
Runtime error
Commit
·
49f680d
1
Parent(s):
672c237
app
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pickle
|
| 3 |
+
import string
|
| 4 |
+
from nltk.corpus import stopwords
|
| 5 |
+
import nltk
|
| 6 |
+
from nltk.stem.porter import PorterStemmer
|
| 7 |
+
|
| 8 |
+
ps = PorterStemmer()
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def transform_text(text):
|
| 12 |
+
text = text.lower()
|
| 13 |
+
text = nltk.word_tokenize(text)
|
| 14 |
+
|
| 15 |
+
y = []
|
| 16 |
+
for i in text:
|
| 17 |
+
if i.isalnum():
|
| 18 |
+
y.append(i)
|
| 19 |
+
|
| 20 |
+
text = y[:]
|
| 21 |
+
y.clear()
|
| 22 |
+
|
| 23 |
+
for i in text:
|
| 24 |
+
if i not in stopwords.words('english') and i not in string.punctuation:
|
| 25 |
+
y.append(i)
|
| 26 |
+
|
| 27 |
+
text = y[:]
|
| 28 |
+
y.clear()
|
| 29 |
+
|
| 30 |
+
for i in text:
|
| 31 |
+
y.append(ps.stem(i))
|
| 32 |
+
|
| 33 |
+
return " ".join(y)
|
| 34 |
+
|
| 35 |
+
tfidf = pickle.load(open('vectorizer.pkl','rb'))
|
| 36 |
+
model = pickle.load(open('model.pkl','rb'))
|
| 37 |
+
|
| 38 |
+
st.title("Offensive/Non-Offensive Classifier")
|
| 39 |
+
|
| 40 |
+
input_sms = st.text_area("Enter the message")
|
| 41 |
+
|
| 42 |
+
if st.button('Predict'):
|
| 43 |
+
|
| 44 |
+
# 1. preprocess
|
| 45 |
+
transformed_sms = transform_text(input_sms)
|
| 46 |
+
# 2. vectorize
|
| 47 |
+
vector_input = tfidf.transform([transformed_sms])
|
| 48 |
+
# 3. predict
|
| 49 |
+
|
| 50 |
+
result = model.predict(vector_input)[0]
|
| 51 |
+
# 4. Display
|
| 52 |
+
if result == 1:
|
| 53 |
+
st.header("Offensive")
|
| 54 |
+
else:
|
| 55 |
+
st.header("Non-Offensive")
|