Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,58 +1,45 @@
|
|
|
|
|
| 1 |
import requests
|
| 2 |
import numpy as np
|
| 3 |
import faiss
|
| 4 |
from PyPDF2 import PdfReader
|
| 5 |
-
from
|
| 6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import streamlit as st
|
| 8 |
-
import torch
|
| 9 |
-
import os
|
| 10 |
|
| 11 |
-
# Initialize Groq
|
| 12 |
-
|
| 13 |
|
| 14 |
-
# Function to
|
| 15 |
def extract_pdf_content(drive_url):
|
| 16 |
-
# Extract file ID from the Google Drive URL
|
| 17 |
file_id = drive_url.split("/d/")[1].split("/view")[0]
|
| 18 |
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
|
| 19 |
-
|
| 20 |
-
# Download the PDF content
|
| 21 |
response = requests.get(download_url)
|
| 22 |
if response.status_code != 200:
|
| 23 |
return None
|
| 24 |
|
| 25 |
-
# Save and extract text from the PDF
|
| 26 |
with open("document.pdf", "wb") as f:
|
| 27 |
f.write(response.content)
|
|
|
|
| 28 |
reader = PdfReader("document.pdf")
|
| 29 |
text = ""
|
| 30 |
for page in reader.pages:
|
| 31 |
text += page.extract_text()
|
| 32 |
return text
|
| 33 |
|
| 34 |
-
# Function to
|
| 35 |
-
def
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
# Function to compute embeddings and build FAISS index
|
| 41 |
-
def build_faiss_index(chunks, model):
|
| 42 |
-
embeddings = []
|
| 43 |
-
for chunk in chunks:
|
| 44 |
-
input_ids = torch.tensor([chunk])
|
| 45 |
-
with torch.no_grad():
|
| 46 |
-
embedding = model(input_ids).last_hidden_state.mean(dim=1).detach().numpy()
|
| 47 |
-
embeddings.append(embedding)
|
| 48 |
-
embeddings = np.vstack(embeddings)
|
| 49 |
-
|
| 50 |
-
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 51 |
-
index.add(embeddings)
|
| 52 |
-
return index
|
| 53 |
|
| 54 |
# Streamlit app
|
| 55 |
-
st.title("RAG-based Application with
|
| 56 |
|
| 57 |
# Predefined Google Drive link
|
| 58 |
drive_url = "https://drive.google.com/file/d/1XvqA1OIssRs2gbmOtKFKj-02yQ5X2yg0/view?usp=sharing"
|
|
@@ -62,45 +49,40 @@ st.write("Extracting content from the document...")
|
|
| 62 |
text = extract_pdf_content(drive_url)
|
| 63 |
if text:
|
| 64 |
st.write("Document extracted successfully!")
|
| 65 |
-
|
| 66 |
-
# Initialize tokenizer and model
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 68 |
-
model = AutoModel.from_pretrained("bert-base-uncased")
|
| 69 |
|
| 70 |
-
st.write("
|
| 71 |
-
|
| 72 |
|
| 73 |
-
st.write("
|
| 74 |
-
index = build_faiss_index(chunks, model)
|
| 75 |
|
| 76 |
-
# Query input
|
| 77 |
query = st.text_input("Enter your query:")
|
| 78 |
if query:
|
| 79 |
-
st.write("
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
-
_, indices = index.search(query_embedding, k=1)
|
| 87 |
-
|
| 88 |
-
# Retrieve the most relevant chunk
|
| 89 |
-
relevant_chunk = chunks[indices[0][0]]
|
| 90 |
-
relevant_text = tokenizer.decode(relevant_chunk)
|
| 91 |
-
st.write("Relevant chunk found:", relevant_text)
|
| 92 |
|
| 93 |
-
#
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
"role": "user",
|
| 99 |
-
"content": relevant_text,
|
| 100 |
-
}
|
| 101 |
-
],
|
| 102 |
-
model="llama-3.3-70b-versatile",
|
| 103 |
)
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
| 105 |
else:
|
| 106 |
st.error("Failed to extract content from the document.")
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import requests
|
| 3 |
import numpy as np
|
| 4 |
import faiss
|
| 5 |
from PyPDF2 import PdfReader
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
| 7 |
+
from langchain.vectorstores import FAISS
|
| 8 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain.chains import RetrievalQA
|
| 10 |
+
from langchain.prompts import PromptTemplate
|
| 11 |
+
from langchain.llms import GroqLLM
|
| 12 |
import streamlit as st
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
# Initialize Groq API LLM
|
| 15 |
+
llm = GroqLLM(api_key=os.getenv("GROQ_API_KEY"))
|
| 16 |
|
| 17 |
+
# Function to extract content from a public Google Drive PDF link
|
| 18 |
def extract_pdf_content(drive_url):
|
|
|
|
| 19 |
file_id = drive_url.split("/d/")[1].split("/view")[0]
|
| 20 |
download_url = f"https://drive.google.com/uc?export=download&id={file_id}"
|
|
|
|
|
|
|
| 21 |
response = requests.get(download_url)
|
| 22 |
if response.status_code != 200:
|
| 23 |
return None
|
| 24 |
|
|
|
|
| 25 |
with open("document.pdf", "wb") as f:
|
| 26 |
f.write(response.content)
|
| 27 |
+
|
| 28 |
reader = PdfReader("document.pdf")
|
| 29 |
text = ""
|
| 30 |
for page in reader.pages:
|
| 31 |
text += page.extract_text()
|
| 32 |
return text
|
| 33 |
|
| 34 |
+
# Function to create a FAISS vector store from the document content
|
| 35 |
+
def create_vector_store(text):
|
| 36 |
+
sentences = text.split(". ")
|
| 37 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 38 |
+
vector_store = FAISS.from_texts(sentences, embedding=embeddings)
|
| 39 |
+
return vector_store, sentences
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Streamlit app
|
| 42 |
+
st.title("RAG-based Application with Focused Context")
|
| 43 |
|
| 44 |
# Predefined Google Drive link
|
| 45 |
drive_url = "https://drive.google.com/file/d/1XvqA1OIssRs2gbmOtKFKj-02yQ5X2yg0/view?usp=sharing"
|
|
|
|
| 49 |
text = extract_pdf_content(drive_url)
|
| 50 |
if text:
|
| 51 |
st.write("Document extracted successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
st.write("Creating vector store...")
|
| 54 |
+
vector_store, sentences = create_vector_store(text)
|
| 55 |
|
| 56 |
+
st.write("Vector store created successfully!")
|
|
|
|
| 57 |
|
|
|
|
| 58 |
query = st.text_input("Enter your query:")
|
| 59 |
if query:
|
| 60 |
+
st.write("Retrieving relevant context from the document...")
|
| 61 |
+
retriever = vector_store.as_retriever()
|
| 62 |
+
retriever.search_kwargs["k"] = 3 # Retrieve top 3 matches
|
| 63 |
+
|
| 64 |
+
# Define a prompt template to guide LLM response generation
|
| 65 |
+
prompt_template = PromptTemplate(
|
| 66 |
+
template="""
|
| 67 |
+
Use the following context to answer the question:
|
| 68 |
+
|
| 69 |
+
{context}
|
| 70 |
+
|
| 71 |
+
Question: {question}
|
| 72 |
+
Answer:""",
|
| 73 |
+
input_variables=["context", "question"]
|
| 74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Create a RetrievalQA chain
|
| 77 |
+
qa_chain = RetrievalQA(
|
| 78 |
+
retriever=retriever,
|
| 79 |
+
llm=llm,
|
| 80 |
+
prompt=prompt_template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
+
|
| 83 |
+
# Run the query through the QA chain
|
| 84 |
+
result = qa_chain.run(query)
|
| 85 |
+
st.write("Answer:", result)
|
| 86 |
else:
|
| 87 |
st.error("Failed to extract content from the document.")
|
| 88 |
+
|