Spaces:
Sleeping
Sleeping
File size: 23,827 Bytes
25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c 23172e4 25e624c af942d4 25e624c 1579830 af942d4 25e624c af942d4 25e624c af942d4 25e624c af942d4 25e624c af942d4 25e624c af942d4 25e624c af942d4 23172e4 af942d4 25e624c 23172e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
"""
Emoji AI Avatar - Main Gradio Application
Real-time emoji avatars based on chat sentiment analysis
With MCP (Model Context Protocol) server integration
"""
import gradio as gr
import os
import socket
import sys
import time
import importlib.util
from pathlib import Path
# Add parent directory to path for imports
ROOT_DIR = Path(__file__).parent
sys.path.insert(0, str(ROOT_DIR))
# Import from modular avatar structure
from avatar import SentimentAnalyzer, EmojiMapper
def _load_module_from_path(module_name: str, file_path: str):
"""Helper to load a module from a file path with hyphens in directory name"""
spec = importlib.util.spec_from_file_location(module_name, file_path)
if spec and spec.loader:
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
raise ImportError(f"Could not load {module_name} from {file_path}")
# Load GeminiClient from llm-inference module
_gemini_module = _load_module_from_path(
"gemini_client",
str(ROOT_DIR / "llm-inference" / "gemini_client.py")
)
GeminiClient = _gemini_module.GeminiClient
# Load MCPClient from mcp-client module
_mcp_module = _load_module_from_path(
"mcp_client",
str(ROOT_DIR / "mcp-client" / "mcp_client.py")
)
MCPClient = _mcp_module.MCPClient
# Load environment variables from .env file
from dotenv import load_dotenv
load_dotenv()
# Initialize components
api_key = os.environ.get('GEMINI_API_KEY')
print(f"๐ API Key loaded: {'Yes (' + api_key[:10] + '...)' if api_key else 'No'}")
gemini = GeminiClient(api_key=api_key)
sentiment_analyzer = SentimentAnalyzer()
emoji_mapper = EmojiMapper()
mcp_client = MCPClient()
# Streaming velocity control (seconds between yields)
STREAM_DELAY = 0.05 # 50ms delay for smooth, readable streaming
def get_emoji_html(emoji: str, label: str, size: int = 64) -> str:
"""Generate styled emoji HTML - instant updates, no fade"""
return f"""
<div style="text-align: center; padding: 10px; min-height: 90px;">
<div style="font-size: {size}px; line-height: 1;">{emoji}</div>
<div style="font-size: 12px; color: #666; margin-top: 5px;">{label}</div>
</div>
"""
custom_css = """
.emoji-container {
display: flex;
justify-content: space-around;
padding: 20px;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
margin-bottom: 20px;
}
.emoji-box {
background: white;
border-radius: 15px;
padding: 15px 30px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
min-width: 120px;
}
/* Prevent fades/transitions and enforce full opacity for emoji displays */
.emoji-box, .emoji-box * {
transition: none !important;
opacity: 1 !important;
}
.chat-container {
border-radius: 15px;
overflow: hidden;
}
input[type="text"] {
border-radius: 8px;
border: 1px solid #ddd;
}
button {
border-radius: 8px;
}
"""
# Build Gradio Interface
with gr.Blocks(title="Emoji AI Avatar") as demo:
gr.Markdown("""
# ๐ Emoji AI Avatar Chat ๐ค
Watch the emojis change based on the **sentiment** of your conversation!
Both your messages and AI responses are analyzed in real-time.
Connect to **MCP servers** on Hugging Face to add new skills!
""")
# Tabs for Chat and MCP Configuration
with gr.Tabs():
# ========== CHAT TAB ==========
with gr.TabItem("๐ฌ Chat", id="chat-tab"):
# Emoji Display Row
with gr.Row(elem_classes="emoji-container"):
with gr.Column(elem_classes="emoji-box"):
user_emoji_display = gr.HTML(
get_emoji_html("๐", "You"),
label="Your Emoji"
)
with gr.Column(elem_classes="emoji-box"):
ai_emoji_display = gr.HTML(
get_emoji_html("๐", "AI: neutral"),
label="AI Emoji"
)
# MCP Status indicator
mcp_status_display = gr.HTML(
value='<div style="text-align: center; padding: 5px; color: #666; font-size: 12px;">๐ MCP: Not connected</div>',
label="MCP Status"
)
# Chat Interface
chatbot = gr.Chatbot(
label="Chat History",
height=400,
)
# Message input and send button in row
with gr.Row():
msg = gr.Textbox(
placeholder="Type your message here... Try expressing different emotions!",
label="Message",
scale=9,
)
submit_btn = gr.Button("Send", variant="primary", scale=1)
# Timer for live emoji updates
timer = gr.Timer(0.1) # Update every 100ms
# Use MCP checkbox
use_mcp_checkbox = gr.Checkbox(
label="๐ Use MCP Context (enhances AI with MCP knowledge)",
value=False,
info="When enabled, MCP provides grounding context to enhance Gemini's responses"
)
# Example messages - 2 examples as requested
gr.Examples(
examples=[
"Hello! How are you?", # Short text example
"I've been working on this complex machine learning project for weeks now, and I'm really excited about the progress we've made. The neural network is finally converging and the accuracy metrics are looking promising. Can you help me understand how to further optimize the hyperparameters?", # Long text example
],
inputs=msg,
label="Try these examples:"
)
# Sentiment Legend
with gr.Accordion("Emoji Legend", open=False):
gr.Markdown("""
### Emotion โ Emoji Mapping (Unified for User & AI)
**Positive Emotions:**
| ๐ Joy | ๐ Happiness | ๐คฉ Excitement | ๐ฅฐ Love | ๐ฅน Gratitude |
|--------|--------------|---------------|---------|--------------|
| ๐ Contentment | ๐ค Hope | ๐ Pride | ๐ Amusement | ๐ฎโ๐จ Relief |
**Curious/Surprise:**
| ๐ง Curiosity | ๐ฒ Surprise | ๐ฏ Anticipation | ๐คฏ Wonder | ๐ Playful |
|--------------|-------------|-----------------|-----------|------------|
**Negative Emotions:**
| ๐ Anger | ๐ค Frustration | ๐ Annoyance | ๐คข Disgust | ๐ Contempt |
|----------|----------------|--------------|------------|-------------|
| ๐ข Sadness | ๐ญ Grief | ๐ Disappointment | ๐ฅบ Hurt | ๐จ Fear |
**Other Emotions:**
| ๐ฐ Anxiety | ๐ Worry | ๐ฌ Nervousness | ๐ Confusion | ๐ณ Embarrassment |
|------------|---------|----------------|--------------|------------------|
| ๐ Shame | ๐ฅฑ Boredom | ๐ถ Loneliness | ๐คจ Skepticism | ๐ Neutral |
""")
# ========== MCP CONFIGURATION TAB ==========
with gr.TabItem("๐ MCP Configuration", id="mcp-tab"):
gr.Markdown("""
## MCP Server Configuration
Connect to **MCP (Model Context Protocol)** servers on Hugging Face Spaces
to add new skills and capabilities to your chatbot!
MCP servers provide specialized tools and functions that can be used during chat.
""")
with gr.Row():
with gr.Column(scale=3):
mcp_url_input = gr.Textbox(
label="MCP Server URL",
placeholder="e.g., MCP-1st-Birthday/QuantumArchitect-MCP",
value="https://huggingface.co/spaces/MCP-1st-Birthday/QuantumArchitect-MCP",
info="Enter the Hugging Face Space URL or just the space name (owner/repo)"
)
with gr.Column(scale=1):
connect_btn = gr.Button("๐ Connect", variant="primary")
disconnect_btn = gr.Button("โ Disconnect", variant="secondary")
# Connection status
mcp_connection_status = gr.HTML(
value='<div style="padding: 15px; background: #f0f0f0; border-radius: 8px; margin: 10px 0;"><b>Status:</b> Not connected</div>'
)
# Available tools/endpoints
mcp_tools_display = gr.Textbox(
label="Available Tools/Endpoints",
lines=8,
interactive=False,
placeholder="Connect to an MCP server to see available tools..."
)
# Test MCP
gr.Markdown("### Test MCP Connection")
with gr.Row():
test_message = gr.Textbox(
label="Test Message",
placeholder="Enter a test message for the MCP server...",
scale=4
)
test_btn = gr.Button("๐งช Test", variant="secondary", scale=1)
test_result = gr.Textbox(
label="Test Result",
lines=5,
interactive=False
)
# Example MCP servers
gr.Markdown("""
### Example MCP Servers on Hugging Face
| Server | Description |
|--------|-------------|
| `MCP-1st-Birthday/QuantumArchitect-MCP` | Quantum computing architecture assistant |
| `gradio/tool-mcp` | General purpose tool server |
Click on a server name above and paste it into the URL field to connect.
""")
# ========== EVENT HANDLERS ==========
# Live typing sentiment update - updates as user types each character
def update_user_emoji_live(text: str):
"""Update user emoji in real-time as they type - EVERY KEYSTROKE"""
if not text or not text.strip():
return get_emoji_html("๐", "You")
# Analyze sentiment on every keystroke for live updates
# The analyzer now focuses on the LAST SENTENCE for accuracy
sentiment = sentiment_analyzer.analyze(text)
emoji = emoji_mapper.get_emoji(sentiment["label"])
return get_emoji_html(emoji, f"You: {sentiment['label']}")
# MCP Connection handlers
def connect_to_mcp(url: str):
"""Connect to MCP server"""
result = mcp_client.connect(url)
if result["success"]:
# Show capabilities
caps_info = ""
if mcp_client.mcp_capabilities:
caps_list = "<br>".join([f"โข {c}" for c in mcp_client.mcp_capabilities[:10]])
caps_info = f"<br><br><b>Capabilities:</b><br>{caps_list}"
status_html = f'''
<div style="padding: 15px; background: #d4edda; border-radius: 8px; margin: 10px 0; border: 1px solid #c3e6cb;">
<b>โ
Status:</b> Connected to <code>{mcp_client.space_name}</code><br>
<small>URL: {mcp_client.space_url}</small><br>
<small>{mcp_client.mcp_description}</small>
{caps_info}
</div>
'''
tools = mcp_client.list_tools()
mcp_indicator = f'<div style="text-align: center; padding: 5px; color: #28a745; font-size: 12px;">๐ MCP: {mcp_client.space_name} (provides context for AI)</div>'
return status_html, tools, mcp_indicator
else:
status_html = f'''
<div style="padding: 15px; background: #f8d7da; border-radius: 8px; margin: 10px 0; border: 1px solid #f5c6cb;">
<b>โ Status:</b> Connection failed<br>
<small>{result["message"]}</small>
</div>
'''
return status_html, "Connection failed", '<div style="text-align: center; padding: 5px; color: #666; font-size: 12px;">๐ MCP: Not connected</div>'
def disconnect_from_mcp():
"""Disconnect from MCP server"""
mcp_client.disconnect()
status_html = '<div style="padding: 15px; background: #f0f0f0; border-radius: 8px; margin: 10px 0;"><b>Status:</b> Disconnected</div>'
mcp_indicator = '<div style="text-align: center; padding: 5px; color: #666; font-size: 12px;">๐ MCP: Not connected</div>'
return status_html, "", mcp_indicator
def test_mcp_connection(message: str):
"""Test the MCP connection - shows context that would be provided to Gemini"""
if not mcp_client.connected:
return "โ Not connected to any MCP server. Please connect first."
if not message.strip():
return "Please enter a test message."
# Show what context would be provided to Gemini
context = mcp_client.get_context_for_llm(message)
if context:
return f"โ
MCP Context for this message:\n\n{context}"
else:
return "โ ๏ธ No context retrieved from MCP for this message."
# Chat with MCP integration - MCP provides CONTEXT for Gemini
def stream_chat_with_mcp(message: str, history: list, use_mcp: bool):
"""
Stream chat response with MCP as grounding context.
MCP provides context/skills that enhance Gemini's responses.
EMOJI DISPLAY: Keeps previous emoji stable until new emotion is detected.
No 'thinking' or intermediate states shown.
"""
if not message.strip():
# No message โ don't overwrite existing emoji displays
yield (
history,
None,
None,
)
return
# Analyze user message sentiment immediately
user_sentiment = sentiment_analyzer.analyze(message)
user_emoji = emoji_mapper.get_emoji(user_sentiment["label"])
user_emoji_html = get_emoji_html(user_emoji, f"You: {user_sentiment['label']}")
# Create new history with user message
new_history = list(history) + [{"role": "user", "content": message}]
# STABLE EMOJI: Keep previous AI emoji unchanged until a new emotion is detected
current_ai_emoji = None
current_ai_label = None
last_yielded_ai_html = None
# don't overwrite the AI emoji at stream start; leave it unchanged until we detect a real emotion
yield (
new_history,
user_emoji_html,
None,
)
# Get MCP context if enabled (no emoji change during context gathering)
mcp_context = ""
if use_mcp and mcp_client.connected:
mcp_context = mcp_client.get_context_for_llm(message)
# Build the enhanced message with MCP context
if mcp_context:
enhanced_message = f"""You have access to MCP context. Use this information to provide a more informed response.
**MCP Context:**
{mcp_context}
**User Question:**
{message}
Please answer the user's question, incorporating the MCP context where relevant. Be conversational and helpful."""
else:
enhanced_message = message
# Stream Gemini response (with MCP context if available)
full_response = ""
chunk_count = 0
last_emotion = ""
last_yield_time = time.time()
for chunk in gemini.stream_chat(enhanced_message):
full_response += chunk
chunk_count += 1
# Velocity control
current_time = time.time()
elapsed = current_time - last_yield_time
if elapsed < STREAM_DELAY:
time.sleep(STREAM_DELAY - elapsed)
last_yield_time = time.time()
# Update AI emoji every 2 chunks - ONLY when emotion changes
if chunk_count % 2 == 0:
partial_sentiment = sentiment_analyzer.analyze(full_response)
detected_emotion = partial_sentiment["label"]
# Only update emoji if emotion actually changed (not empty)
if detected_emotion and detected_emotion != "neutral" and detected_emotion != last_emotion:
last_emotion = detected_emotion
current_ai_emoji = emoji_mapper.get_emoji(detected_emotion)
# Show MCP indicator if using MCP
if mcp_context:
current_ai_label = f"AI+MCP: {detected_emotion}"
else:
current_ai_label = f"AI: {detected_emotion}"
elif detected_emotion == "neutral" and last_emotion == "":
# First detection is neutral - update label but keep neutral emoji
last_emotion = "neutral"
current_ai_emoji = "๐"
current_ai_label = "AI: neutral"
# Add MCP indicator to response if context was used
display_response = full_response
if mcp_context and chunk_count == 1:
display_response = f"๐ *Using {mcp_client.space_name} context*\n\n{full_response}"
elif mcp_context:
display_response = f"๐ *Using {mcp_client.space_name} context*\n\n{full_response}"
display_history = list(history) + [
{"role": "user", "content": message},
{"role": "assistant", "content": display_response}
]
# Only update ai_emoji_display when AI emoji actually changed
ai_html_to_yield = None
if current_ai_emoji is not None:
ai_html_to_yield = get_emoji_html(current_ai_emoji, current_ai_label)
# If identical to last yielded HTML, avoid updating to prevent visual flicker
if ai_html_to_yield == last_yielded_ai_html:
ai_html_to_yield = None
else:
last_yielded_ai_html = ai_html_to_yield
yield (
display_history,
user_emoji_html,
ai_html_to_yield,
)
# Final sentiment analysis
final_sentiment = sentiment_analyzer.analyze(full_response)
final_emoji = emoji_mapper.get_emoji(final_sentiment["label"])
# Final response with MCP indicator if used
final_response = full_response
if mcp_context:
final_response = f"๐ *Using {mcp_client.space_name} context*\n\n{full_response}"
final_label = f"AI+MCP: {final_sentiment['label']}"
else:
final_label = f"AI: {final_sentiment['label']}"
final_history = list(history) + [
{"role": "user", "content": message},
{"role": "assistant", "content": final_response}
]
yield (
final_history,
user_emoji_html,
get_emoji_html(final_emoji, final_label),
)
# Listen to text input changes for live emoji update
# Use both timer.tick AND msg.input for maximum responsiveness
timer.tick(
update_user_emoji_live,
inputs=[msg],
outputs=[user_emoji_display],
)
# Also use .input() for immediate keystroke feedback (Gradio 6 compatible)
msg.input(
update_user_emoji_live,
inputs=[msg],
outputs=[user_emoji_display],
)
# MCP connection buttons
connect_btn.click(
connect_to_mcp,
inputs=[mcp_url_input],
outputs=[mcp_connection_status, mcp_tools_display, mcp_status_display],
)
disconnect_btn.click(
disconnect_from_mcp,
outputs=[mcp_connection_status, mcp_tools_display, mcp_status_display],
)
# Test MCP button
test_btn.click(
test_mcp_connection,
inputs=[test_message],
outputs=[test_result],
)
# Handle message submission with streaming (now with MCP support)
msg.submit(
stream_chat_with_mcp,
[msg, chatbot, use_mcp_checkbox],
[chatbot, user_emoji_display, ai_emoji_display],
).then(
lambda: "",
None,
msg,
)
submit_btn.click(
stream_chat_with_mcp,
[msg, chatbot, use_mcp_checkbox],
[chatbot, user_emoji_display, ai_emoji_display],
).then(
lambda: "",
None,
msg,
)
# Clear button
clear_btn = gr.Button("Clear Chat", variant="secondary")
def clear_chat():
gemini.reset_chat() # Reset Gemini chat history too
return [], get_emoji_html("๐", "You"), get_emoji_html("๐", "AI: neutral")
clear_btn.click(
clear_chat,
None,
[chatbot, user_emoji_display, ai_emoji_display],
)
def _is_port_free(port: int) -> bool:
"""Return True if localhost:port is available for binding."""
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
s.bind(("0.0.0.0", port))
return True
except OSError:
return False
def _choose_port(preferred: int | None = None, start: int = 7861, end: int = 7870) -> int:
"""Choose an available port.
Priority:
1. Environment variable GRADIO_SERVER_PORT or PORT
2. HuggingFace Spaces detection (use port 7860)
3. preferred argument
4. scan range start..end
5. Let Gradio auto-assign by returning None
"""
# 1. environment override
env_port = os.environ.get("GRADIO_SERVER_PORT") or os.environ.get("PORT")
if env_port:
try:
p = int(env_port)
return p # Trust the environment variable
except Exception:
pass
# 2. Detect HuggingFace Spaces
if os.environ.get("SPACE_ID"):
print("๐ค HuggingFace Space detected. Using default port 7860.")
return 7860
# 3. preferred
if preferred and _is_port_free(preferred):
return preferred
# 4. scan range
for p in range(start, end + 1):
if _is_port_free(p):
return p
# 5. Let Gradio handle it with auto-assignment
print("โ ๏ธ No port in preferred range available. Letting Gradio auto-assign.")
return None
if __name__ == "__main__":
# Prefer 7861..7870, but choose automatically if occupied.
# For HuggingFace Spaces, auto-detect and use port 7860
preferred_port = 7861
port = _choose_port(preferred=preferred_port, start=7861, end=7870)
if port:
print(f"๐ Attempting to start Gradio on 0.0.0.0:{port}")
else:
print(f"๐ Starting Gradio with auto-assigned port")
# Try launching on the chosen port, but gracefully fallback to auto-assignment
# if Gradio raises OSError (port collision/race condition).
try:
demo.launch(
server_name="0.0.0.0",
server_port=port,
share=False,
css=custom_css,
)
except OSError as e:
print(f"โ ๏ธ Failed to bind to port {port}: {e}. Falling back to auto-assigned port.")
demo.launch(
server_name="0.0.0.0",
share=False,
css=custom_css,
)
|