""" Emoji AI Avatar - Main Gradio Application Real-time emoji avatars based on chat sentiment analysis With MCP (Model Context Protocol) server integration """ import gradio as gr import os import socket import sys import time import importlib.util from pathlib import Path # Add parent directory to path for imports ROOT_DIR = Path(__file__).parent sys.path.insert(0, str(ROOT_DIR)) # Import from modular avatar structure from avatar import SentimentAnalyzer, EmojiMapper def _load_module_from_path(module_name: str, file_path: str): """Helper to load a module from a file path with hyphens in directory name""" spec = importlib.util.spec_from_file_location(module_name, file_path) if spec and spec.loader: module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module raise ImportError(f"Could not load {module_name} from {file_path}") # Load GeminiClient from llm-inference module _gemini_module = _load_module_from_path( "gemini_client", str(ROOT_DIR / "llm-inference" / "gemini_client.py") ) GeminiClient = _gemini_module.GeminiClient # Load MCPClient from mcp-client module _mcp_module = _load_module_from_path( "mcp_client", str(ROOT_DIR / "mcp-client" / "mcp_client.py") ) MCPClient = _mcp_module.MCPClient # Load environment variables from .env file from dotenv import load_dotenv load_dotenv() # Initialize components api_key = os.environ.get('GEMINI_API_KEY') print(f"๐Ÿ”‘ API Key loaded: {'Yes (' + api_key[:10] + '...)' if api_key else 'No'}") gemini = GeminiClient(api_key=api_key) sentiment_analyzer = SentimentAnalyzer() emoji_mapper = EmojiMapper() mcp_client = MCPClient() # Streaming velocity control (seconds between yields) STREAM_DELAY = 0.05 # 50ms delay for smooth, readable streaming def get_emoji_html(emoji: str, label: str, size: int = 64) -> str: """Generate styled emoji HTML - instant updates, no fade""" return f"""
{emoji}
{label}
""" custom_css = """ .emoji-container { display: flex; justify-content: space-around; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 20px; } .emoji-box { background: white; border-radius: 15px; padding: 15px 30px; box-shadow: 0 4px 15px rgba(0,0,0,0.1); min-width: 120px; } /* Prevent fades/transitions and enforce full opacity for emoji displays */ .emoji-box, .emoji-box * { transition: none !important; opacity: 1 !important; } .chat-container { border-radius: 15px; overflow: hidden; } input[type="text"] { border-radius: 8px; border: 1px solid #ddd; } button { border-radius: 8px; } """ # Build Gradio Interface with gr.Blocks(title="Emoji AI Avatar") as demo: gr.Markdown(""" # ๐Ÿ˜Š Emoji AI Avatar Chat ๐Ÿค– Watch the emojis change based on the **sentiment** of your conversation! Both your messages and AI responses are analyzed in real-time. Connect to **MCP servers** on Hugging Face to add new skills! """) # Tabs for Chat and MCP Configuration with gr.Tabs(): # ========== CHAT TAB ========== with gr.TabItem("๐Ÿ’ฌ Chat", id="chat-tab"): # Emoji Display Row with gr.Row(elem_classes="emoji-container"): with gr.Column(elem_classes="emoji-box"): user_emoji_display = gr.HTML( get_emoji_html("๐Ÿ˜", "You"), label="Your Emoji" ) with gr.Column(elem_classes="emoji-box"): ai_emoji_display = gr.HTML( get_emoji_html("๐Ÿ˜", "AI: neutral"), label="AI Emoji" ) # MCP Status indicator mcp_status_display = gr.HTML( value='
๐Ÿ”Œ MCP: Not connected
', label="MCP Status" ) # Chat Interface chatbot = gr.Chatbot( label="Chat History", height=400, ) # Message input and send button in row with gr.Row(): msg = gr.Textbox( placeholder="Type your message here... Try expressing different emotions!", label="Message", scale=9, ) submit_btn = gr.Button("Send", variant="primary", scale=1) # Timer for live emoji updates timer = gr.Timer(0.1) # Update every 100ms # Use MCP checkbox use_mcp_checkbox = gr.Checkbox( label="๐Ÿ”Œ Use MCP Context (enhances AI with MCP knowledge)", value=False, info="When enabled, MCP provides grounding context to enhance Gemini's responses" ) # Example messages - 2 examples as requested gr.Examples( examples=[ "Hello! How are you?", # Short text example "I've been working on this complex machine learning project for weeks now, and I'm really excited about the progress we've made. The neural network is finally converging and the accuracy metrics are looking promising. Can you help me understand how to further optimize the hyperparameters?", # Long text example ], inputs=msg, label="Try these examples:" ) # Sentiment Legend with gr.Accordion("Emoji Legend", open=False): gr.Markdown(""" ### Emotion โ†’ Emoji Mapping (Unified for User & AI) **Positive Emotions:** | ๐Ÿ˜„ Joy | ๐Ÿ˜Š Happiness | ๐Ÿคฉ Excitement | ๐Ÿฅฐ Love | ๐Ÿฅน Gratitude | |--------|--------------|---------------|---------|--------------| | ๐Ÿ˜Œ Contentment | ๐Ÿค— Hope | ๐Ÿ˜Ž Pride | ๐Ÿ˜† Amusement | ๐Ÿ˜ฎโ€๐Ÿ’จ Relief | **Curious/Surprise:** | ๐Ÿง Curiosity | ๐Ÿ˜ฒ Surprise | ๐Ÿ˜ฏ Anticipation | ๐Ÿคฏ Wonder | ๐Ÿ™ƒ Playful | |--------------|-------------|-----------------|-----------|------------| **Negative Emotions:** | ๐Ÿ˜  Anger | ๐Ÿ˜ค Frustration | ๐Ÿ˜’ Annoyance | ๐Ÿคข Disgust | ๐Ÿ˜ Contempt | |----------|----------------|--------------|------------|-------------| | ๐Ÿ˜ข Sadness | ๐Ÿ˜ญ Grief | ๐Ÿ˜ž Disappointment | ๐Ÿฅบ Hurt | ๐Ÿ˜จ Fear | **Other Emotions:** | ๐Ÿ˜ฐ Anxiety | ๐Ÿ˜Ÿ Worry | ๐Ÿ˜ฌ Nervousness | ๐Ÿ˜• Confusion | ๐Ÿ˜ณ Embarrassment | |------------|---------|----------------|--------------|------------------| | ๐Ÿ˜” Shame | ๐Ÿฅฑ Boredom | ๐Ÿ˜ถ Loneliness | ๐Ÿคจ Skepticism | ๐Ÿ˜ Neutral | """) # ========== MCP CONFIGURATION TAB ========== with gr.TabItem("๐Ÿ”Œ MCP Configuration", id="mcp-tab"): gr.Markdown(""" ## MCP Server Configuration Connect to **MCP (Model Context Protocol)** servers on Hugging Face Spaces to add new skills and capabilities to your chatbot! MCP servers provide specialized tools and functions that can be used during chat. """) with gr.Row(): with gr.Column(scale=3): mcp_url_input = gr.Textbox( label="MCP Server URL", placeholder="e.g., MCP-1st-Birthday/QuantumArchitect-MCP", value="https://huggingface.co/spaces/MCP-1st-Birthday/QuantumArchitect-MCP", info="Enter the Hugging Face Space URL or just the space name (owner/repo)" ) with gr.Column(scale=1): connect_btn = gr.Button("๐Ÿ”Œ Connect", variant="primary") disconnect_btn = gr.Button("โŒ Disconnect", variant="secondary") # Connection status mcp_connection_status = gr.HTML( value='
Status: Not connected
' ) # Available tools/endpoints mcp_tools_display = gr.Textbox( label="Available Tools/Endpoints", lines=8, interactive=False, placeholder="Connect to an MCP server to see available tools..." ) # Test MCP gr.Markdown("### Test MCP Connection") with gr.Row(): test_message = gr.Textbox( label="Test Message", placeholder="Enter a test message for the MCP server...", scale=4 ) test_btn = gr.Button("๐Ÿงช Test", variant="secondary", scale=1) test_result = gr.Textbox( label="Test Result", lines=5, interactive=False ) # Example MCP servers gr.Markdown(""" ### Example MCP Servers on Hugging Face | Server | Description | |--------|-------------| | `MCP-1st-Birthday/QuantumArchitect-MCP` | Quantum computing architecture assistant | | `gradio/tool-mcp` | General purpose tool server | Click on a server name above and paste it into the URL field to connect. """) # ========== EVENT HANDLERS ========== # Live typing sentiment update - updates as user types each character def update_user_emoji_live(text: str): """Update user emoji in real-time as they type - EVERY KEYSTROKE""" if not text or not text.strip(): return get_emoji_html("๐Ÿ˜", "You") # Analyze sentiment on every keystroke for live updates # The analyzer now focuses on the LAST SENTENCE for accuracy sentiment = sentiment_analyzer.analyze(text) emoji = emoji_mapper.get_emoji(sentiment["label"]) return get_emoji_html(emoji, f"You: {sentiment['label']}") # MCP Connection handlers def connect_to_mcp(url: str): """Connect to MCP server""" result = mcp_client.connect(url) if result["success"]: # Show capabilities caps_info = "" if mcp_client.mcp_capabilities: caps_list = "
".join([f"โ€ข {c}" for c in mcp_client.mcp_capabilities[:10]]) caps_info = f"

Capabilities:
{caps_list}" status_html = f'''
โœ… Status: Connected to {mcp_client.space_name}
URL: {mcp_client.space_url}
{mcp_client.mcp_description} {caps_info}
''' tools = mcp_client.list_tools() mcp_indicator = f'
๐Ÿ”Œ MCP: {mcp_client.space_name} (provides context for AI)
' return status_html, tools, mcp_indicator else: status_html = f'''
โŒ Status: Connection failed
{result["message"]}
''' return status_html, "Connection failed", '
๐Ÿ”Œ MCP: Not connected
' def disconnect_from_mcp(): """Disconnect from MCP server""" mcp_client.disconnect() status_html = '
Status: Disconnected
' mcp_indicator = '
๐Ÿ”Œ MCP: Not connected
' return status_html, "", mcp_indicator def test_mcp_connection(message: str): """Test the MCP connection - shows context that would be provided to Gemini""" if not mcp_client.connected: return "โŒ Not connected to any MCP server. Please connect first." if not message.strip(): return "Please enter a test message." # Show what context would be provided to Gemini context = mcp_client.get_context_for_llm(message) if context: return f"โœ… MCP Context for this message:\n\n{context}" else: return "โš ๏ธ No context retrieved from MCP for this message." # Chat with MCP integration - MCP provides CONTEXT for Gemini def stream_chat_with_mcp(message: str, history: list, use_mcp: bool): """ Stream chat response with MCP as grounding context. MCP provides context/skills that enhance Gemini's responses. EMOJI DISPLAY: Keeps previous emoji stable until new emotion is detected. No 'thinking' or intermediate states shown. """ if not message.strip(): # No message โ€” don't overwrite existing emoji displays yield ( history, None, None, ) return # Analyze user message sentiment immediately user_sentiment = sentiment_analyzer.analyze(message) user_emoji = emoji_mapper.get_emoji(user_sentiment["label"]) user_emoji_html = get_emoji_html(user_emoji, f"You: {user_sentiment['label']}") # Create new history with user message new_history = list(history) + [{"role": "user", "content": message}] # STABLE EMOJI: Keep previous AI emoji unchanged until a new emotion is detected current_ai_emoji = None current_ai_label = None last_yielded_ai_html = None # don't overwrite the AI emoji at stream start; leave it unchanged until we detect a real emotion yield ( new_history, user_emoji_html, None, ) # Get MCP context if enabled (no emoji change during context gathering) mcp_context = "" if use_mcp and mcp_client.connected: mcp_context = mcp_client.get_context_for_llm(message) # Build the enhanced message with MCP context if mcp_context: enhanced_message = f"""You have access to MCP context. Use this information to provide a more informed response. **MCP Context:** {mcp_context} **User Question:** {message} Please answer the user's question, incorporating the MCP context where relevant. Be conversational and helpful.""" else: enhanced_message = message # Stream Gemini response (with MCP context if available) full_response = "" chunk_count = 0 last_emotion = "" last_yield_time = time.time() for chunk in gemini.stream_chat(enhanced_message): full_response += chunk chunk_count += 1 # Velocity control current_time = time.time() elapsed = current_time - last_yield_time if elapsed < STREAM_DELAY: time.sleep(STREAM_DELAY - elapsed) last_yield_time = time.time() # Update AI emoji every 2 chunks - ONLY when emotion changes if chunk_count % 2 == 0: partial_sentiment = sentiment_analyzer.analyze(full_response) detected_emotion = partial_sentiment["label"] # Only update emoji if emotion actually changed (not empty) if detected_emotion and detected_emotion != "neutral" and detected_emotion != last_emotion: last_emotion = detected_emotion current_ai_emoji = emoji_mapper.get_emoji(detected_emotion) # Show MCP indicator if using MCP if mcp_context: current_ai_label = f"AI+MCP: {detected_emotion}" else: current_ai_label = f"AI: {detected_emotion}" elif detected_emotion == "neutral" and last_emotion == "": # First detection is neutral - update label but keep neutral emoji last_emotion = "neutral" current_ai_emoji = "๐Ÿ˜" current_ai_label = "AI: neutral" # Add MCP indicator to response if context was used display_response = full_response if mcp_context and chunk_count == 1: display_response = f"๐Ÿ”Œ *Using {mcp_client.space_name} context*\n\n{full_response}" elif mcp_context: display_response = f"๐Ÿ”Œ *Using {mcp_client.space_name} context*\n\n{full_response}" display_history = list(history) + [ {"role": "user", "content": message}, {"role": "assistant", "content": display_response} ] # Only update ai_emoji_display when AI emoji actually changed ai_html_to_yield = None if current_ai_emoji is not None: ai_html_to_yield = get_emoji_html(current_ai_emoji, current_ai_label) # If identical to last yielded HTML, avoid updating to prevent visual flicker if ai_html_to_yield == last_yielded_ai_html: ai_html_to_yield = None else: last_yielded_ai_html = ai_html_to_yield yield ( display_history, user_emoji_html, ai_html_to_yield, ) # Final sentiment analysis final_sentiment = sentiment_analyzer.analyze(full_response) final_emoji = emoji_mapper.get_emoji(final_sentiment["label"]) # Final response with MCP indicator if used final_response = full_response if mcp_context: final_response = f"๐Ÿ”Œ *Using {mcp_client.space_name} context*\n\n{full_response}" final_label = f"AI+MCP: {final_sentiment['label']}" else: final_label = f"AI: {final_sentiment['label']}" final_history = list(history) + [ {"role": "user", "content": message}, {"role": "assistant", "content": final_response} ] yield ( final_history, user_emoji_html, get_emoji_html(final_emoji, final_label), ) # Listen to text input changes for live emoji update # Use both timer.tick AND msg.input for maximum responsiveness timer.tick( update_user_emoji_live, inputs=[msg], outputs=[user_emoji_display], ) # Also use .input() for immediate keystroke feedback (Gradio 6 compatible) msg.input( update_user_emoji_live, inputs=[msg], outputs=[user_emoji_display], ) # MCP connection buttons connect_btn.click( connect_to_mcp, inputs=[mcp_url_input], outputs=[mcp_connection_status, mcp_tools_display, mcp_status_display], ) disconnect_btn.click( disconnect_from_mcp, outputs=[mcp_connection_status, mcp_tools_display, mcp_status_display], ) # Test MCP button test_btn.click( test_mcp_connection, inputs=[test_message], outputs=[test_result], ) # Handle message submission with streaming (now with MCP support) msg.submit( stream_chat_with_mcp, [msg, chatbot, use_mcp_checkbox], [chatbot, user_emoji_display, ai_emoji_display], ).then( lambda: "", None, msg, ) submit_btn.click( stream_chat_with_mcp, [msg, chatbot, use_mcp_checkbox], [chatbot, user_emoji_display, ai_emoji_display], ).then( lambda: "", None, msg, ) # Clear button clear_btn = gr.Button("Clear Chat", variant="secondary") def clear_chat(): gemini.reset_chat() # Reset Gemini chat history too return [], get_emoji_html("๐Ÿ˜", "You"), get_emoji_html("๐Ÿ˜", "AI: neutral") clear_btn.click( clear_chat, None, [chatbot, user_emoji_display, ai_emoji_display], ) def _is_port_free(port: int) -> bool: """Return True if localhost:port is available for binding.""" try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("0.0.0.0", port)) return True except OSError: return False def _choose_port(preferred: int | None = None, start: int = 7861, end: int = 7870) -> int: """Choose an available port. Priority: 1. Environment variable GRADIO_SERVER_PORT or PORT 2. HuggingFace Spaces detection (use port 7860) 3. preferred argument 4. scan range start..end 5. Let Gradio auto-assign by returning None """ # 1. environment override env_port = os.environ.get("GRADIO_SERVER_PORT") or os.environ.get("PORT") if env_port: try: p = int(env_port) return p # Trust the environment variable except Exception: pass # 2. Detect HuggingFace Spaces if os.environ.get("SPACE_ID"): print("๐Ÿค— HuggingFace Space detected. Using default port 7860.") return 7860 # 3. preferred if preferred and _is_port_free(preferred): return preferred # 4. scan range for p in range(start, end + 1): if _is_port_free(p): return p # 5. Let Gradio handle it with auto-assignment print("โš ๏ธ No port in preferred range available. Letting Gradio auto-assign.") return None if __name__ == "__main__": # Prefer 7861..7870, but choose automatically if occupied. # For HuggingFace Spaces, auto-detect and use port 7860 preferred_port = 7861 port = _choose_port(preferred=preferred_port, start=7861, end=7870) if port: print(f"๐Ÿš€ Attempting to start Gradio on 0.0.0.0:{port}") else: print(f"๐Ÿš€ Starting Gradio with auto-assigned port") # Try launching on the chosen port, but gracefully fallback to auto-assignment # if Gradio raises OSError (port collision/race condition). try: demo.launch( server_name="0.0.0.0", server_port=port, share=False, css=custom_css, ) except OSError as e: print(f"โš ๏ธ Failed to bind to port {port}: {e}. Falling back to auto-assigned port.") demo.launch( server_name="0.0.0.0", share=False, css=custom_css, )