import gradio as gr from transformers import pipeline text_emotion = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True) def analyze_emotion(text): results = text_emotion(text)[0] results = sorted(results, key=lambda x: x['score'], reverse=True) output = {r['label']: round(r['score'], 3) for r in results} return output demo = gr.Interface( fn=analyze_emotion, inputs=gr.Textbox(lines=3, placeholder="Type something here..."), outputs=gr.Label(num_top_classes=3), title="Empath AI - Emotion Detection", description="Type a sentence to see what emotions it contains!" ) if __name__ == "__main__": demo.launch()