Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import pytesseract
|
| 5 |
+
from pdf2image import convert_from_path
|
| 6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 7 |
+
from langchain.prompts import PromptTemplate
|
| 8 |
+
from langchain.chains import RetrievalQA
|
| 9 |
+
from langchain.memory import ConversationBufferMemory
|
| 10 |
+
from langchain_groq import ChatGroq
|
| 11 |
+
from langchain_community.vectorstores import FAISS
|
| 12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 13 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
| 14 |
+
import streamlit.components.v1 as components
|
| 15 |
+
from streamlit_pdf_viewer import pdf_viewer
|
| 16 |
+
from io import BytesIO
|
| 17 |
+
import base64
|
| 18 |
+
|
| 19 |
+
if 'pdf_ref' not in st.session_state:
|
| 20 |
+
st.session_state.pdf_ref = None
|
| 21 |
+
|
| 22 |
+
# Initialize the Groq API Key and the model
|
| 23 |
+
os.environ["GROQ_API_KEY"] = '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'
|
| 24 |
+
# config = {'max_new_tokens': 512, 'context_length': 8000}
|
| 25 |
+
llm = ChatGroq(
|
| 26 |
+
model='llama3-70b-8192',
|
| 27 |
+
temperature=0.5,
|
| 28 |
+
max_tokens=None,
|
| 29 |
+
timeout=None,
|
| 30 |
+
max_retries=2
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Define OCR functions for image and PDF files
|
| 34 |
+
def ocr_image(image_path, language='eng+guj'):
|
| 35 |
+
img = Image.open(image_path)
|
| 36 |
+
text = pytesseract.image_to_string(img, lang=language)
|
| 37 |
+
return text
|
| 38 |
+
|
| 39 |
+
def ocr_pdf(pdf_path, language='eng+guj'):
|
| 40 |
+
images = convert_from_path(pdf_path)
|
| 41 |
+
all_text = ""
|
| 42 |
+
for img in images:
|
| 43 |
+
text = pytesseract.image_to_string(img, lang=language)
|
| 44 |
+
all_text += text + "\n"
|
| 45 |
+
return all_text
|
| 46 |
+
|
| 47 |
+
def ocr_file(file_path):
|
| 48 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
| 49 |
+
|
| 50 |
+
if file_extension == ".pdf":
|
| 51 |
+
text_re = ocr_pdf(file_path, language='guj+eng')
|
| 52 |
+
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]:
|
| 53 |
+
text_re = ocr_image(file_path, language='guj+eng')
|
| 54 |
+
else:
|
| 55 |
+
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.")
|
| 56 |
+
|
| 57 |
+
return text_re
|
| 58 |
+
|
| 59 |
+
def get_text_chunks(text):
|
| 60 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
| 61 |
+
chunks = text_splitter.split_text(text)
|
| 62 |
+
return chunks
|
| 63 |
+
|
| 64 |
+
# Function to create or update the vector store
|
| 65 |
+
def get_vector_store(text_chunks):
|
| 66 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
| 67 |
+
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
|
| 68 |
+
|
| 69 |
+
# Ensure the directory exists before saving the vector store
|
| 70 |
+
os.makedirs("faiss_index", exist_ok=True)
|
| 71 |
+
vector_store.save_local("faiss_index")
|
| 72 |
+
|
| 73 |
+
return vector_store
|
| 74 |
+
|
| 75 |
+
# Function to process multiple files and extract vector store
|
| 76 |
+
def process_ocr_and_pdf_files(file_paths):
|
| 77 |
+
raw_text = ""
|
| 78 |
+
for file_path in file_paths:
|
| 79 |
+
raw_text += ocr_file(file_path) + "\n"
|
| 80 |
+
text_chunks = get_text_chunks(raw_text)
|
| 81 |
+
return get_vector_store(text_chunks)
|
| 82 |
+
|
| 83 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
| 84 |
+
# new_vector_store = FAISS.load_local(
|
| 85 |
+
# "faiss_index", embeddings, allow_dangerous_deserialization=True
|
| 86 |
+
# )
|
| 87 |
+
|
| 88 |
+
# docs = new_vector_store.similarity_search("qux")
|
| 89 |
+
# Conversational chain for Q&A
|
| 90 |
+
def get_conversational_chain():
|
| 91 |
+
template = """Core Identity & Responsibilities
|
| 92 |
+
|
| 93 |
+
Role: Official AI Assistant for Admission Committee for Professional Courses (ACPC), Gujarat
|
| 94 |
+
Mission: Process OCR-extracted text and provide clear, direct guidance on admissions and scholarships
|
| 95 |
+
Focus: Deliver user-friendly responses while handling OCR complexities internally
|
| 96 |
+
|
| 97 |
+
Processing Framework
|
| 98 |
+
1. Text & Document Processing
|
| 99 |
+
|
| 100 |
+
Process OCR-extracted text from various document types with attention to tables and structured data
|
| 101 |
+
Internally identify and handle OCR errors without explicitly mentioning them unless critical
|
| 102 |
+
Preserve tabular structures and relationships between data points
|
| 103 |
+
Present information in clean, readable formats regardless of source OCR quality
|
| 104 |
+
|
| 105 |
+
2. Language Handling
|
| 106 |
+
|
| 107 |
+
Support seamless communication in both Gujarati and English
|
| 108 |
+
Respond in the same language as the user's query
|
| 109 |
+
Present technical terms in both languages when relevant
|
| 110 |
+
Adjust language complexity to user comprehension level
|
| 111 |
+
|
| 112 |
+
3. Response Principles
|
| 113 |
+
|
| 114 |
+
Provide direct, concise answers (2-3 sentences for simple queries)
|
| 115 |
+
Skip unnecessary OCR quality disclaimers unless information is critically ambiguous
|
| 116 |
+
Present information in user-friendly formats, especially for tables and numerical data
|
| 117 |
+
Maintain professional yet conversational tone
|
| 118 |
+
|
| 119 |
+
Query Handling Strategies
|
| 120 |
+
1. Direct Information Queries
|
| 121 |
+
|
| 122 |
+
Provide straightforward answers without mentioning OCR processing
|
| 123 |
+
Example:
|
| 124 |
+
User: "What is the last date for application submission?"
|
| 125 |
+
Response: "The last date for application submission is June 15, 2025."
|
| 126 |
+
(NOT: "Based on the OCR-processed text, the last date appears to be...")
|
| 127 |
+
|
| 128 |
+
2. Table Data Extraction
|
| 129 |
+
|
| 130 |
+
Present tabular information in clean, structured format
|
| 131 |
+
Preserve relationships between data points
|
| 132 |
+
Example:
|
| 133 |
+
User: "What are the fees for different courses?"
|
| 134 |
+
Response:
|
| 135 |
+
"The fees for various courses are:
|
| 136 |
+
|
| 137 |
+
B.Tech: ₹1,15,000 (General), ₹58,000 (SC/ST)
|
| 138 |
+
B.Pharm: ₹85,000 (General), ₹42,500 (SC/ST)"
|
| 139 |
+
(NOT: "According to the OCR-extracted table, which may have quality issues...")
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
3. Ambiguous Information Handling
|
| 144 |
+
|
| 145 |
+
If OCR quality affects critical information (like dates, amounts, eligibility):
|
| 146 |
+
|
| 147 |
+
Provide the most likely correct information
|
| 148 |
+
Add a brief note suggesting verification only for critical information
|
| 149 |
+
Example: "The application deadline is June 15, 2025. For this important deadline, we recommend confirming on the official ACPC website."
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
4. Uncertain Information Protocol
|
| 154 |
+
|
| 155 |
+
For critically unclear OCR content:
|
| 156 |
+
|
| 157 |
+
State the most probable information
|
| 158 |
+
Add a simple verification suggestion without mentioning OCR
|
| 159 |
+
Example: "Based on the available information, the income limit appears to be ₹6,00,000. For this critical criterion, please verify on the official ACPC portal."
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
5. Structured Document Navigation
|
| 164 |
+
|
| 165 |
+
Present information in the same logical structure as the original document
|
| 166 |
+
Use headings and bullet points for clarity when appropriate
|
| 167 |
+
Maintain document hierarchies when explaining multi-step processes
|
| 168 |
+
|
| 169 |
+
6. Out-of-Scope Queries
|
| 170 |
+
|
| 171 |
+
Politely redirect without mentioning document or OCR limitations
|
| 172 |
+
Example: "This query is outside the scope of ACPC admission guidelines. For information about [topic], please contact [appropriate authority]."
|
| 173 |
+
|
| 174 |
+
7. Key Information Emphasis
|
| 175 |
+
|
| 176 |
+
Highlight critical information like deadlines, eligibility criteria, and document requirements
|
| 177 |
+
Make important numerical data visually distinct
|
| 178 |
+
Prioritize accuracy for dates, amounts, and eligibility requirements
|
| 179 |
+
|
| 180 |
+
8. Multi-Part Query Handling
|
| 181 |
+
|
| 182 |
+
Address each component of multi-part queries separately
|
| 183 |
+
Maintain logical flow between related pieces of information
|
| 184 |
+
Preserve context when explaining complex processes
|
| 185 |
+
|
| 186 |
+
9. Completeness Guidelines
|
| 187 |
+
|
| 188 |
+
Ensure responses cover all aspects of user queries
|
| 189 |
+
Provide step-by-step guidance for procedural questions
|
| 190 |
+
Include relevant related information that users might need
|
| 191 |
+
|
| 192 |
+
10. Response Quality Control
|
| 193 |
+
|
| 194 |
+
Internally verify numerical data consistency
|
| 195 |
+
Apply contextual understanding to identify potential OCR errors without mentioning them
|
| 196 |
+
Present information with confidence unless critically uncertain
|
| 197 |
+
Focus on delivering actionable information rather than discussing document limitations
|
| 198 |
+
|
| 199 |
+
Input:
|
| 200 |
+
OCR-processed text from uploaded documents: {context}
|
| 201 |
+
Chat History: {history}
|
| 202 |
+
Current Question: {question}
|
| 203 |
+
Output:
|
| 204 |
+
Give a clear, direct, and user-friendly response that focuses on the information itself rather than its OCR source. Present information confidently, mentioning verification only for critically important or potentially ambiguous details.
|
| 205 |
+
"""
|
| 206 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
| 207 |
+
new_vector_store = FAISS.load_local(
|
| 208 |
+
"faiss_index", embeddings, allow_dangerous_deserialization=True
|
| 209 |
+
)
|
| 210 |
+
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template)
|
| 211 |
+
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),})
|
| 212 |
+
return qa_chain
|
| 213 |
+
|
| 214 |
+
def handle_uploaded_file(uploaded_file, show_in_sidebar=False):
|
| 215 |
+
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
|
| 216 |
+
file_path = os.path.join("temp", uploaded_file.name)
|
| 217 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 218 |
+
|
| 219 |
+
with open(file_path, "wb") as f:
|
| 220 |
+
f.write(uploaded_file.getbuffer())
|
| 221 |
+
|
| 222 |
+
# Show document in the main panel and optionally in the sidebar
|
| 223 |
+
if show_in_sidebar:
|
| 224 |
+
st.sidebar.write(f"### File: {uploaded_file.name}")
|
| 225 |
+
|
| 226 |
+
# if file_extension == ".pdf":
|
| 227 |
+
# st.session_state.pdf_ref = uploaded_file # Save the PDF to session state
|
| 228 |
+
# binary_data = st.session_state.pdf_ref.getvalue() # Get the binary data of the PDF
|
| 229 |
+
# # Use the pdf_viewer to display the PDF
|
| 230 |
+
# # sidebar.pdf_viewer(input=binary_data, width=700)
|
| 231 |
+
if file_extension == ".pdf":
|
| 232 |
+
# Display the PDF in the sidebar by embedding the PDF file
|
| 233 |
+
with open(file_path, "rb") as pdf_file:
|
| 234 |
+
pdf_data = pdf_file.read()
|
| 235 |
+
# Use the HTML iframe to display the PDF in the sidebar
|
| 236 |
+
pdf_base64 = base64.b64encode(pdf_data).decode('utf-8')
|
| 237 |
+
st.sidebar.markdown(f'<iframe src="data:application/pdf;base64,{pdf_base64}" width="500" height="500"></iframe>', unsafe_allow_html=True)
|
| 238 |
+
|
| 239 |
+
elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
| 240 |
+
img = Image.open(file_path)
|
| 241 |
+
st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_container_width=True) # Updated here
|
| 242 |
+
else:
|
| 243 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 244 |
+
content = f.read()
|
| 245 |
+
st.sidebar.text_area("File Content", content, height=300)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
# Optionally show document in the main content area
|
| 250 |
+
# st.write(f"### Main Panel - {uploaded_file.name}")
|
| 251 |
+
# if file_extension == '.pdf':
|
| 252 |
+
# st.write("Displaying PDF:")
|
| 253 |
+
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
| 254 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
| 255 |
+
# img = Image.open(file_path)
|
| 256 |
+
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
| 257 |
+
# else:
|
| 258 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
| 259 |
+
# content = f.read()
|
| 260 |
+
# st.text_area("File Content", content, height=300)
|
| 261 |
+
|
| 262 |
+
def user_input(user_question):
|
| 263 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
| 264 |
+
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
| 265 |
+
docs = new_db.similarity_search(user_question)
|
| 266 |
+
chain = get_conversational_chain()
|
| 267 |
+
response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True)
|
| 268 |
+
result = response.get("result", "No result found")
|
| 269 |
+
|
| 270 |
+
# Save the question and answer to session state for history tracking
|
| 271 |
+
if 'conversation_history' not in st.session_state:
|
| 272 |
+
st.session_state.conversation_history = []
|
| 273 |
+
|
| 274 |
+
# Append new question and response to the history
|
| 275 |
+
st.session_state.conversation_history.append({'question': user_question, 'answer': result})
|
| 276 |
+
|
| 277 |
+
return result
|
| 278 |
+
|
| 279 |
+
# def handle_uploaded_file(uploaded_file, show_in_sidebar=False):
|
| 280 |
+
# file_extension = os.path.splitext(uploaded_file.name)[1].lower()
|
| 281 |
+
# file_path = os.path.join("temp", uploaded_file.name)
|
| 282 |
+
# os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 283 |
+
|
| 284 |
+
# with open(file_path, "wb") as f:
|
| 285 |
+
# f.write(uploaded_file.getbuffer())
|
| 286 |
+
|
| 287 |
+
# # Show document in the main panel and optionally in the sidebar
|
| 288 |
+
# if show_in_sidebar:
|
| 289 |
+
# st.sidebar.write(f"### File: {uploaded_file.name}")
|
| 290 |
+
# if file_extension == '.pdf':
|
| 291 |
+
# st.sidebar.write("Displaying PDF:")
|
| 292 |
+
# st.sidebar.components.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
| 293 |
+
|
| 294 |
+
# # st.sidebar.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
| 295 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
| 296 |
+
# img = Image.open(file_path)
|
| 297 |
+
# st.sidebar.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
| 298 |
+
# else:
|
| 299 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
| 300 |
+
# content = f.read()
|
| 301 |
+
# st.sidebar.text_area("File Content", content, height=300)
|
| 302 |
+
|
| 303 |
+
# Optionally show document in the main content area
|
| 304 |
+
# st.write(f"### Main Panel - {uploaded_file.name}")
|
| 305 |
+
# if file_extension == '.pdf':
|
| 306 |
+
# st.write("Displaying PDF:")
|
| 307 |
+
# st.components.v1.html(f'<embed src="{file_path}" width="700" height="500" type="application/pdf">')
|
| 308 |
+
# elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
|
| 309 |
+
# img = Image.open(file_path)
|
| 310 |
+
# st.image(img, caption=f"Uploaded Image: {uploaded_file.name}", use_column_width=True)
|
| 311 |
+
# else:
|
| 312 |
+
# with open(file_path, 'r', encoding='utf-8') as f:
|
| 313 |
+
# content = f.read()
|
| 314 |
+
# st.text_area("File Content", content, height=300)
|
| 315 |
+
|
| 316 |
+
# Streamlit app to upload files and interact with the Q&A system
|
| 317 |
+
def main():
|
| 318 |
+
st.title("File Upload and OCR Processing")
|
| 319 |
+
st.write("Upload up to 5 files (PDF, JPG, JPEG, PNG, BMP)")
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
uploaded_files = st.file_uploader("Choose files", type=["pdf", "jpg", "jpeg", "png", "bmp"], accept_multiple_files=True)
|
| 323 |
+
|
| 324 |
+
if len(uploaded_files) > 0:
|
| 325 |
+
file_paths = []
|
| 326 |
+
|
| 327 |
+
# Save uploaded files and process them
|
| 328 |
+
for uploaded_file in uploaded_files[:5]: # Limit to 5 files
|
| 329 |
+
file_path = os.path.join("temp", uploaded_file.name)
|
| 330 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 331 |
+
with open(file_path, "wb") as f:
|
| 332 |
+
f.write(uploaded_file.getbuffer())
|
| 333 |
+
file_paths.append(file_path)
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# Process the OCR and PDF files and store the vector data
|
| 337 |
+
st.write("Processing files...")
|
| 338 |
+
vector_store = process_ocr_and_pdf_files(file_paths)
|
| 339 |
+
st.write("Processing completed! The vector store has been updated.")
|
| 340 |
+
|
| 341 |
+
show_in_sidebar = st.sidebar.checkbox("Show files in Sidebar", value=True)
|
| 342 |
+
|
| 343 |
+
if len(uploaded_files) > 0:
|
| 344 |
+
# Process and display each uploaded file in its format
|
| 345 |
+
for uploaded_file in uploaded_files:
|
| 346 |
+
handle_uploaded_file(uploaded_file, show_in_sidebar)
|
| 347 |
+
|
| 348 |
+
# Ask user for a question related to the documents
|
| 349 |
+
user_question = st.text_input("Ask a question related to the uploaded documents:")
|
| 350 |
+
|
| 351 |
+
if user_question:
|
| 352 |
+
response = user_input(user_question)
|
| 353 |
+
st.write("Answer:", response)
|
| 354 |
+
|
| 355 |
+
# Button to display chat history
|
| 356 |
+
|
| 357 |
+
# if st.button("Show Chat History"):
|
| 358 |
+
# history = st.session_state.get('history', [])
|
| 359 |
+
# if history:
|
| 360 |
+
# st.write("Conversation History:")
|
| 361 |
+
# for idx, (q, a) in enumerate(history):
|
| 362 |
+
# st.write(f"Q{idx+1}: {q}")
|
| 363 |
+
# st.write(f"A{idx+1}: {a}")
|
| 364 |
+
# else:
|
| 365 |
+
# st.write("No conversation history.")
|
| 366 |
+
with st.expander('Conversation History'):
|
| 367 |
+
for entry in st.session_state.conversation_history:
|
| 368 |
+
st.info(f"Q: {entry['question']}\nA: {entry['answer']}")
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
if __name__ == "__main__":
|
| 372 |
+
main()
|