File size: 17,596 Bytes
5c7c7d5
99bba35
 
 
2bc6f48
b1c12fa
99bba35
76a154f
99bba35
 
 
 
 
 
4e683ec
99bba35
 
 
 
76a154f
99bba35
 
 
 
 
 
76a154f
99bba35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a154f
99bba35
da78e50
99bba35
 
 
 
da78e50
99bba35
 
 
 
 
 
 
 
 
 
 
ca1953e
99bba35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bc6f48
99bba35
 
 
 
 
 
 
2bc6f48
99bba35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bc6f48
99bba35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a154f
99bba35
 
 
 
 
 
b11e705
99bba35
 
 
 
 
 
 
 
 
 
4e683ec
99bba35
 
 
7282a05
99bba35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a154f
99bba35
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os
import gc
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
from threading import Thread, Event
import time
import uuid
import re
from diffusers import ChromaPipeline

# Pre-load ONLY Chroma (not LLMs, to support custom models)
print("Loading Chroma1-HD...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device at module level: {device}")

chroma_pipe = ChromaPipeline.from_pretrained(
    "lodestones/Chroma1-HD",
    torch_dtype=torch.bfloat16
)
chroma_pipe = chroma_pipe.to(device)
print("βœ“ Chroma1-HD ready")

MODEL_CONFIGS = {
    "Nekochu/Luminia-13B-v3": {
        "system": "",
        "examples": [
            "### Instruction:\nCreate stable diffusion metadata based on the given english description. Luminia\n\n### Input:\nfavorites and popular SFW",
            "### Instruction:\nProvide tips on stable diffusion to optimize low token prompts and enhance quality include prompt example."
        ],
        "supports_image_gen": True,
        "sd_temp": 0.3,
        "sd_top_p": 0.8,
        "branch": None  # Uses main/default branch
    },
    "Nekochu/Luminia-8B-v4-Chan": {
        "system": "write a response like a 4chan user",
        "examples": [],
        "supports_image_gen": False,
        "branch": "Llama-3-8B-4Chan_SD_QLoRa"
    },
    "Nekochu/Luminia-8B-RP": {
        "system": "You are a knowledgeable and empathetic mental health professional.",
        "examples": ["How to cope with anxiety?"],
        "supports_image_gen": False,
        "branch": None
    }
}

DEFAULT_MODELS = list(MODEL_CONFIGS.keys())
models_cache = {}
stop_event = Event()
current_thread = None
MAX_CACHE_SIZE = 2
DEFAULT_MODEL = DEFAULT_MODELS[0]

def parse_model_id(model_id_str):
    """Parse model ID and optional branch (format: 'model_id:branch')"""
    if ':' in model_id_str:
        parts = model_id_str.split(':', 1)
        return parts[0], parts[1]
    
    if model_id_str in MODEL_CONFIGS: # Check if it's a known model with a specific branch
        config = MODEL_CONFIGS[model_id_str]
        return model_id_str, config.get('branch', None)
    
    return model_id_str, None

def parse_sd_metadata(text: str):
    """Parse SD metadata"""
    metadata = {
        'prompt': '',
        'negative_prompt': '',
        'steps': 25,
        'cfg_scale': 7.0,
        'seed': 42,
        'width': 1024,
        'height': 1024
    }
    
    if not text:
        metadata['prompt'] = '(masterpiece, best quality), 1girl'
        return metadata
    
    try:
        if "Negative prompt:" in text:
            parts = text.split("Negative prompt:", 1)
            metadata['prompt'] = parts[0].strip().rstrip('.,;')[:500]
            
            if len(parts) > 1:
                neg_section = parts[1]
                param_match = re.search(r'(Steps:|Sampler:|CFG scale:|Seed:|Size:)', neg_section)
                if param_match:
                    metadata['negative_prompt'] = neg_section[:param_match.start()].strip().rstrip('.,;')[:300]
                else:
                    metadata['negative_prompt'] = neg_section.strip().rstrip('.,;')[:300]
        else:
            param_match = re.search(r'(Steps:|Sampler:|CFG scale:|Seed:|Size:)', text)
            if param_match:
                metadata['prompt'] = text[:param_match.start()].strip().rstrip('.,;')[:500]
            else:
                metadata['prompt'] = text.strip()[:500]
        
        patterns = {
            'Steps': (r'Steps:\s*(\d+)', lambda x: min(int(x), 30)),
            'CFG scale': (r'CFG scale:\s*([\d.]+)', float),
            'Seed': (r'Seed:\s*(\d+)', lambda x: int(x) % (2**32)),
            'Size': (r'Size:\s*(\d+)x(\d+)', None)
        }
        
        for key, (pattern, converter) in patterns.items():
            match = re.search(pattern, text)
            if match:
                try:
                    if key == 'Size':
                        metadata['width'] = min(max(int(match.group(1)), 512), 1536)
                        metadata['height'] = min(max(int(match.group(2)), 512), 1536)
                    else:
                        metadata[key.lower().replace(' ', '_')] = converter(match.group(1))
                except:
                    pass
    except:
        pass
    
    if not metadata['prompt']:
        metadata['prompt'] = '(masterpiece, best quality), 1girl'
    
    return metadata

def clear_old_cache():
    global models_cache
    if len(models_cache) >= MAX_CACHE_SIZE:
        oldest = min(models_cache.items(), key=lambda x: x[1].get('last_used', 0))
        del models_cache[oldest[0]]
        gc.collect()
        torch.cuda.empty_cache()

@spaces.GPU(duration=119)
def generate_text_gpu(model_id_str, message, history, system, temp, top_p, top_k, max_tokens, rep_penalty):
    """Text generation with branch support"""
    global models_cache, stop_event, current_thread
    stop_event.clear()
    
    model_id, branch = parse_model_id(model_id_str) # Parse model ID and branch
    cache_key = f"{model_id}:{branch}" if branch else model_id
    
    config = MODEL_CONFIGS.get(model_id, {})
    if "Luminia-13B-v3" in model_id and ("stable diffusion" in message.lower() or "metadata" in message.lower()):
        temp = config.get('sd_temp', 0.3)
        top_p = config.get('sd_top_p', 0.8)
        print(f"Using SD settings: temp={temp}, top_p={top_p}")
    
    if cache_key not in models_cache:
        clear_old_cache()
        try:
            yield history + [[message, f"πŸ“₯ Loading {model_id}{f' ({branch})' if branch else ''}..."]], "Loading..."
            
            # Load with branch/revision support
            load_kwargs = {"trust_remote_code": True}
            if branch:
                load_kwargs["revision"] = branch
                print(f"Loading from branch: {branch}")
            
            tokenizer = AutoTokenizer.from_pretrained(model_id, **load_kwargs)
            tokenizer.pad_token = tokenizer.eos_token or tokenizer.unk_token
            
            bnb_config = BitsAndBytesConfig(
                load_in_4bit=True,
                bnb_4bit_compute_dtype=torch.bfloat16,
                bnb_4bit_quant_type="nf4",
                bnb_4bit_use_double_quant=True
            )
            
            model_kwargs = {
                "quantization_config": bnb_config,
                "device_map": "auto",
                "trust_remote_code": True,
                "attn_implementation": "flash_attention_2" if torch.cuda.is_available() else None,
                "low_cpu_mem_usage": True
            }
            if branch:
                model_kwargs["revision"] = branch
            
            model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
            
            models_cache[cache_key] = {
                "model": model,
                "tokenizer": tokenizer,
                "last_used": time.time()
            }
            
        except Exception as e:
            yield history + [[message, f"❌ Failed: {str(e)[:200]}"]], "Error"
            return
    
    models_cache[cache_key]['last_used'] = time.time()
    model = models_cache[cache_key]["model"]
    tokenizer = models_cache[cache_key]["tokenizer"]
    
    prompt = ""
    if system:
        prompt = f"{system}\n\n"
    
    for user_msg, assistant_msg in history:
        if "### Instruction:" in user_msg:
            prompt += f"{user_msg}\n### Response:\n{assistant_msg}\n\n"
        else:
            prompt += f"### Instruction:\n{user_msg}\n\n### Response:\n{assistant_msg}\n\n"
    
    if "### Instruction:" in message and "### Response:" not in message:
        prompt += f"{message}\n### Response:\n"
    elif "### Instruction:" not in message:
        prompt += f"### Instruction:\n{message}\n\n### Response:\n"
    else:
        prompt += message
    
    print(f"Prompt ending: ...{prompt[-200:]}")
    
    try:
        inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
        input_tokens = inputs['input_ids'].shape[1]
        inputs = {k: v.to(model.device) for k, v in inputs.items()}
    except Exception as e:
        yield history + [[message, f"❌ Tokenization failed: {str(e)}"]], "Error"
        return
    
    print(f"πŸ“ {input_tokens} tokens | Temp: {temp} | Top-p: {top_p}")
    
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=5)
    gen_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": min(max_tokens, 2048),
        "temperature": max(temp, 0.01),
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": rep_penalty,
        "do_sample": temp > 0.01,
        "pad_token_id": tokenizer.pad_token_id
    }
    
    current_thread = Thread(target=model.generate, kwargs=gen_kwargs)
    current_thread.start()
    
    start_time = time.time()
    partial = ""
    token_count = 0
    
    try:
        for text in streamer:
            if stop_event.is_set():
                break
            partial += text
            token_count = len(tokenizer.encode(partial, add_special_tokens=False))
            elapsed = time.time() - start_time
            if elapsed > 0:
                yield history + [[message, partial]], f"⚑ {token_count} @ {token_count/elapsed:.1f} t/s"
    except:
        pass
    finally:
        if current_thread.is_alive():
            stop_event.set()
            current_thread.join(timeout=2)
    
    final_time = time.time() - start_time
    yield history + [[message, partial]], f"βœ… {token_count} tokens in {final_time:.1f}s"

@spaces.GPU()
def generate_image_gpu(text_output):
    """Image generation with pre-loaded Chroma"""
    global chroma_pipe
    
    if not text_output or text_output.isspace():
        return None, "❌ No valid text", gr.update(visible=False)
    
    try:
        metadata = parse_sd_metadata(text_output)
        print(f"Generating: {metadata['width']}x{metadata['height']} | Steps: {metadata['steps']}")
        
        if torch.cuda.is_available():
            chroma_pipe = chroma_pipe.to("cuda")
        
        generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(metadata['seed'])
        
        image = chroma_pipe(
            prompt=metadata['prompt'],
            negative_prompt=metadata['negative_prompt'],
            generator=generator,
            num_inference_steps=metadata['steps'],
            guidance_scale=metadata['cfg_scale'],
            width=metadata['width'],
            height=metadata['height']
        ).images[0]
        
        status = f"βœ… {metadata['width']}x{metadata['height']} | {metadata['steps']} steps | CFG: {metadata['cfg_scale']} | Seed: {metadata['seed']}"
        return image, status, gr.update(visible=False)
        
    except Exception as e:
        import traceback
        traceback.print_exc()
        return None, f"❌ Failed: {str(e)[:200]}", gr.update(visible=False)

def stop_generation():
    global stop_event, current_thread
    stop_event.set()
    if current_thread and current_thread.is_alive():
        current_thread.join(timeout=2)
    return gr.update(visible=True), gr.update(visible=False)

css = """
#chatbot {height: 305px;}
#input-row {display: flex; gap: 4px;}
#input-box {flex-grow: 1;}
#button-group {display: inline-flex; flex-direction: column; gap: 2px; width: 45px;}
#button-group button {width: 40px; height: 28px; padding: 2px; font-size: 14px;}
#status {font-size: 11px; color: #666; margin-top: 2px;}
#image-output {max-height: 400px; margin-top: 8px;}
#img-loading {font-size: 11px; color: #666; margin: 4px 0;}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Row():
        with gr.Column(scale=4):
            chatbot = gr.Chatbot(elem_id="chatbot")
            
            with gr.Row(elem_id="input-row"):
                msg = gr.Textbox(
                    label="Instruction",
                    lines=3,
                    elem_id="input-box",
                    value=MODEL_CONFIGS[DEFAULT_MODEL]["examples"][0] if MODEL_CONFIGS[DEFAULT_MODEL]["examples"] else "",
                    scale=10
                )
                with gr.Column(elem_id="button-group", scale=1, min_width=45):
                    submit = gr.Button("β–Ά", variant="primary", size="sm")
                    stop = gr.Button("⏹", variant="stop", size="sm", visible=False)
                    undo = gr.Button("↩", size="sm")
                    clear = gr.Button("πŸ—‘", size="sm")
            
            status = gr.Markdown("", elem_id="status")
            
            with gr.Row():
                image_btn = gr.Button("🎨 Generate Image using Chroma1-HD", visible=False, variant="secondary")
                last_text = gr.Textbox(visible=False)
            
            img_loading = gr.Markdown("", visible=False, elem_id="img-loading")
            image_output = gr.Image(visible=False, elem_id="image-output")
            image_status = gr.Markdown("", visible=False)
            
            examples = gr.Examples(
                examples=[[ex] for ex in MODEL_CONFIGS[DEFAULT_MODEL]["examples"] if ex],
                inputs=msg,
                label="Examples"
            )
        
        with gr.Column(scale=1):
            model = gr.Dropdown(
                DEFAULT_MODELS,
                value=DEFAULT_MODEL,
                label="Model",
                allow_custom_value=True,
                info="Custom HF ID + optional :branch"
            )
            
            with gr.Accordion("Settings", open=False):
                system = gr.Textbox(
                    label="System Prompt",
                    value=MODEL_CONFIGS[DEFAULT_MODEL]["system"],
                    lines=2
                )
                temp = gr.Slider(0.1, 1.0, 0.35, label="Temperature")
                top_p = gr.Slider(0.5, 1.0, 0.85, label="Top-p")
                top_k = gr.Slider(10, 100, 40, label="Top-k")
                rep_penalty = gr.Slider(1.0, 1.5, 1.1, label="Repetition Penalty")
                max_tokens = gr.Slider(256, 2048, 1024, label="Max Tokens")
                
                export_btn = gr.Button("πŸ’Ύ Export", size="sm")
                export_file = gr.File(visible=False)
    
    def update_ui_on_model_change(model_id_str):
        """Update all UI components when model changes"""
        model_id, branch = parse_model_id(model_id_str)
        config = MODEL_CONFIGS.get(model_id, {"system": "", "examples": [""], "supports_image_gen": False})
        return (
            config["system"],
            config["examples"][0] if config["examples"] else "",
            gr.update(visible=False),  # image_btn
            "",  # last_text
            None,  # image_output (clear image)
            gr.update(visible=False),  # image_output visibility
            "",  # image_status text
            gr.update(visible=False),  # image_status visibility
            gr.update(visible=False)  # img_loading visibility
        )
    
    def check_image_availability(model_id_str, history):
        model_id, _ = parse_model_id(model_id_str)
        if "Luminia-13B-v3" in model_id and history and len(history) > 0:
            return gr.update(visible=True), history[-1][1]
        return gr.update(visible=False), ""
    
    submit.click(
        lambda: (gr.update(visible=False), gr.update(visible=True)),
        None, [submit, stop]
    ).then(
        generate_text_gpu,
        [model, msg, chatbot, system, temp, top_p, top_k, max_tokens, rep_penalty],
        [chatbot, status]
    ).then(
        lambda: (gr.update(visible=True), gr.update(visible=False)),
        None, [submit, stop]
    ).then(
        check_image_availability,
        [model, chatbot],
        [image_btn, last_text]
    )
    
    stop.click(stop_generation, None, [submit, stop])
    
    image_btn.click(
        lambda: gr.update(value="🎨 Generating...", visible=True),
        None, img_loading
    ).then(
        generate_image_gpu,
        last_text,
        [image_output, image_status, img_loading]
    ).then(
        lambda img: (gr.update(visible=img is not None), gr.update(visible=True)),
        image_output,
        [image_output, image_status]
    )
    
    model.change(
        update_ui_on_model_change,
        model,
        [system, msg, image_btn, last_text, image_output, image_output, image_status, image_status, img_loading]
    )
    
    undo.click(
        lambda h: h[:-1] if h else h,
        chatbot, chatbot
    ).then(
        check_image_availability,
        [model, chatbot],
        [image_btn, last_text]
    )
    
    clear.click(
        lambda: ([], "", "", None, "", gr.update(visible=False), "", gr.update(visible=False)),
        None, [chatbot, msg, status, image_output, image_status, image_btn, last_text, img_loading]
    )
    
    def export_chat(history):
        if not history:
            return None
        content = "\n\n".join([f"User: {u}\n\nAssistant: {a}" for u, a in history])
        path = f"chat_{uuid.uuid4().hex[:8]}.txt"
        with open(path, "w", encoding="utf-8") as f:
            f.write(content)
        return path
    
    export_btn.click(export_chat, chatbot, export_file).then(
        lambda: gr.update(visible=True), None, export_file
    )

demo.queue().launch()