Spaces:
Runtime error
Runtime error
File size: 9,332 Bytes
05aac64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import torch
import librosa
import functools
import scipy.stats
import numpy as np
CENTS_PER_BIN, MAX_FMAX, PITCH_BINS, SAMPLE_RATE, WINDOW_SIZE = 20, 2006, 360, 16000, 1024
def mean(signals, win_length=9):
assert signals.dim() == 2
signals = signals.unsqueeze(1)
mask = ~torch.isnan(signals)
padding = win_length // 2
ones_kernel = torch.ones(signals.size(1), 1, win_length, device=signals.device)
avg_pooled = torch.nn.functional.conv1d(torch.where(mask, signals, torch.zeros_like(signals)), ones_kernel, stride=1, padding=padding) / torch.nn.functional.conv1d(mask.float(), ones_kernel, stride=1, padding=padding).clamp(min=1)
avg_pooled[avg_pooled == 0] = float("nan")
return avg_pooled.squeeze(1)
def median(signals, win_length):
assert signals.dim() == 2
signals = signals.unsqueeze(1)
mask = ~torch.isnan(signals)
padding = win_length // 2
x = torch.nn.functional.pad(torch.where(mask, signals, torch.zeros_like(signals)), (padding, padding), mode="reflect")
mask = torch.nn.functional.pad(mask.float(), (padding, padding), mode="constant", value=0)
x = x.unfold(2, win_length, 1)
mask = mask.unfold(2, win_length, 1)
x = x.contiguous().view(x.size()[:3] + (-1,))
mask = mask.contiguous().view(mask.size()[:3] + (-1,))
x_sorted, _ = torch.sort(torch.where(mask.bool(), x.float(), float("inf")).to(x), dim=-1)
median_pooled = x_sorted.gather(-1, ((mask.sum(dim=-1) - 1) // 2).clamp(min=0).unsqueeze(-1).long()).squeeze(-1)
median_pooled[torch.isinf(median_pooled)] = float("nan")
return median_pooled.squeeze(1)
class CREPE_MODEL(torch.nn.Module):
def __init__(self, model='full'):
super().__init__()
in_channels = {"full": [1, 1024, 128, 128, 128, 256], "large": [1, 768, 96, 96, 96, 192], "medium": [1, 512, 64, 64, 64, 128], "small": [1, 256, 32, 32, 32, 64], "tiny": [1, 128, 16, 16, 16, 32]}[model]
out_channels = {"full": [1024, 128, 128, 128, 256, 512], "large": [768, 96, 96, 96, 192, 384], "medium": [512, 64, 64, 64, 128, 256], "small": [256, 32, 32, 32, 64, 128], "tiny": [128, 16, 16, 16, 32, 64]}[model]
self.in_features = {"full": 2048, "large": 1536, "medium": 1024, "small": 512, "tiny": 256}[model]
kernel_sizes = [(512, 1)] + 5 * [(64, 1)]
strides = [(4, 1)] + 5 * [(1, 1)]
batch_norm_fn = functools.partial(torch.nn.BatchNorm2d, eps=0.0010000000474974513, momentum=0.0)
self.conv1 = torch.nn.Conv2d(in_channels=in_channels[0], out_channels=out_channels[0], kernel_size=kernel_sizes[0], stride=strides[0])
self.conv1_BN = batch_norm_fn(num_features=out_channels[0])
self.conv2 = torch.nn.Conv2d(in_channels=in_channels[1], out_channels=out_channels[1], kernel_size=kernel_sizes[1], stride=strides[1])
self.conv2_BN = batch_norm_fn(num_features=out_channels[1])
self.conv3 = torch.nn.Conv2d(in_channels=in_channels[2], out_channels=out_channels[2], kernel_size=kernel_sizes[2], stride=strides[2])
self.conv3_BN = batch_norm_fn(num_features=out_channels[2])
self.conv4 = torch.nn.Conv2d(in_channels=in_channels[3], out_channels=out_channels[3], kernel_size=kernel_sizes[3], stride=strides[3])
self.conv4_BN = batch_norm_fn(num_features=out_channels[3])
self.conv5 = torch.nn.Conv2d(in_channels=in_channels[4], out_channels=out_channels[4], kernel_size=kernel_sizes[4], stride=strides[4])
self.conv5_BN = batch_norm_fn(num_features=out_channels[4])
self.conv6 = torch.nn.Conv2d(in_channels=in_channels[5], out_channels=out_channels[5], kernel_size=kernel_sizes[5], stride=strides[5])
self.conv6_BN = batch_norm_fn(num_features=out_channels[5])
self.classifier = torch.nn.Linear(in_features=self.in_features, out_features=PITCH_BINS)
def forward(self, x, embed=False):
x = self.embed(x)
if embed: return x
return torch.sigmoid(self.classifier(self.layer(x, self.conv6, self.conv6_BN).permute(0, 2, 1, 3).reshape(-1, self.in_features)))
def embed(self, x):
x = x[:, None, :, None]
return self.layer(self.layer(self.layer(self.layer(self.layer(x, self.conv1, self.conv1_BN, (0, 0, 254, 254)), self.conv2, self.conv2_BN), self.conv3, self.conv3_BN), self.conv4, self.conv4_BN), self.conv5, self.conv5_BN)
def layer(self, x, conv, batch_norm, padding=(0, 0, 31, 32)):
return torch.nn.functional.max_pool2d(batch_norm(torch.nn.functional.relu(conv(torch.nn.functional.pad(x, padding)))), (2, 1), (2, 1))
class CREPE:
def __init__(self, model_path, model_size="full", hop_length=512, batch_size=None, f0_min=50, f0_max=1100, device=None, sample_rate=16000, return_periodicity=False):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.hop_length = hop_length
self.batch_size = batch_size
self.sample_rate = sample_rate
self.f0_min = f0_min
self.f0_max = f0_max
self.return_periodicity = return_periodicity
model = CREPE_MODEL(model_size)
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
self.model = model.to(device)
def bins_to_frequency(self, bins):
if str(bins.device).startswith("ocl"): bins = bins.to(torch.float32)
cents = CENTS_PER_BIN * bins + 1997.3794084376191
return 10 * 2 ** ((cents + cents.new_tensor(scipy.stats.triang.rvs(c=0.5, loc=-CENTS_PER_BIN, scale=2 * CENTS_PER_BIN, size=cents.size()))) / 1200)
def frequency_to_bins(self, frequency, quantize_fn=torch.floor):
return quantize_fn(((1200 * torch.log2(frequency / 10)) - 1997.3794084376191) / CENTS_PER_BIN).int()
def viterbi(self, logits):
if not hasattr(self, 'transition'):
xx, yy = np.meshgrid(range(360), range(360))
transition = np.maximum(12 - abs(xx - yy), 0)
self.transition = transition / transition.sum(axis=1, keepdims=True)
with torch.no_grad():
probs = torch.nn.functional.softmax(logits, dim=1)
bins = torch.tensor(np.array([librosa.sequence.viterbi(sequence, self.transition).astype(np.int64) for sequence in probs.cpu().numpy()]), device=probs.device)
return bins, self.bins_to_frequency(bins)
def preprocess(self, audio, pad=True):
hop_length = (self.sample_rate // 100) if self.hop_length is None else self.hop_length
if self.sample_rate != SAMPLE_RATE:
audio = torch.tensor(librosa.resample(audio.detach().cpu().numpy().squeeze(0), orig_sr=self.sample_rate, target_sr=SAMPLE_RATE, res_type="soxr_vhq"), device=audio.device).unsqueeze(0)
hop_length = int(hop_length * SAMPLE_RATE / self.sample_rate)
if pad:
total_frames = 1 + int(audio.size(1) // hop_length)
audio = torch.nn.functional.pad(audio, (WINDOW_SIZE // 2, WINDOW_SIZE // 2))
else: total_frames = 1 + int((audio.size(1) - WINDOW_SIZE) // hop_length)
batch_size = total_frames if self.batch_size is None else self.batch_size
for i in range(0, total_frames, batch_size):
frames = torch.nn.functional.unfold(audio[:, None, None, max(0, i * hop_length):min(audio.size(1), (i + batch_size - 1) * hop_length + WINDOW_SIZE)], kernel_size=(1, WINDOW_SIZE), stride=(1, hop_length))
if self.device.startswith("ocl"):
frames = frames.transpose(1, 2).contiguous().reshape(-1, WINDOW_SIZE).to(self.device)
else:
frames = frames.transpose(1, 2).reshape(-1, WINDOW_SIZE).to(self.device)
frames -= frames.mean(dim=1, keepdim=True)
frames /= torch.max(torch.tensor(1e-10, device=frames.device), frames.std(dim=1, keepdim=True))
yield frames
def periodicity(self, probabilities, bins):
probs_stacked = probabilities.transpose(1, 2).reshape(-1, PITCH_BINS)
periodicity = probs_stacked.gather(1, bins.reshape(-1, 1).to(torch.int64))
return periodicity.reshape(probabilities.size(0), probabilities.size(2))
def postprocess(self, probabilities):
probabilities = probabilities.detach()
probabilities[:, :self.frequency_to_bins(torch.tensor(self.f0_min))] = -float('inf')
probabilities[:, self.frequency_to_bins(torch.tensor(self.f0_max), torch.ceil):] = -float('inf')
bins, pitch = self.viterbi(probabilities)
if not self.return_periodicity: return pitch
return pitch, self.periodicity(probabilities, bins)
def compute_f0(self, audio, pad=True):
results = []
for frames in self.preprocess(audio, pad):
with torch.no_grad():
model = self.model(
frames,
embed=False
).reshape(audio.size(0), -1, PITCH_BINS).transpose(1, 2)
result = self.postprocess(model)
results.append((result[0].to(audio.device), result[1].to(audio.device)) if isinstance(result, tuple) else result.to(audio.device))
if self.return_periodicity:
pitch, periodicity = zip(*results)
return torch.cat(pitch, 1), torch.cat(periodicity, 1)
return torch.cat(results, 1) |