File size: 2,031 Bytes
63d4ab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
from .base import BaseModel


class LMDeployModel(BaseModel):
    def __init__(self,
            device='cuda',
            cache_size_mb=100,
            **kwargs):
        assert device == 'cuda', "lmdeploy only supports cuda devices, consider changing device or using a different backend instead."
        cache_size_ratio = cache_size_mb * 1024**2 / torch.cuda.get_device_properties('cuda').total_memory
        backend_config = TurbomindEngineConfig(cache_max_entry_count=cache_size_ratio)
        self.pipeline = pipeline('ekwek/Soprano-80M',
            log_level='ERROR',
            backend_config=backend_config)

    def infer(self,
            prompts,
            top_p=0.95,
            temperature=0.3,
            repetition_penalty=1.2):
        gen_config=GenerationConfig(output_last_hidden_state='generation',
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_new_tokens=512)
        responses = self.pipeline(prompts, gen_config=gen_config)
        res = []
        for response in responses:
            res.append({
                'finish_reason': response.finish_reason,
                'hidden_state': response.last_hidden_state
            })
        return res

    def stream_infer(self,
            prompt,
            top_p=0.95,
            temperature=0.3,
            repetition_penalty=1.2):
        gen_config=GenerationConfig(output_last_hidden_state='generation',
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_new_tokens=512)
        responses = self.pipeline.stream_infer([prompt], gen_config=gen_config)
        for response in responses:
            yield {
                'finish_reason': response.finish_reason,
                'hidden_state': response.last_hidden_state
            }