Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import math | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| sys.path.append(os.getcwd()) | |
| from modules.commons import convert_pad_shape | |
| class MultiHeadAttention(nn.Module): | |
| def __init__(self, channels, out_channels, n_heads, p_dropout=0.0, window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): | |
| super().__init__() | |
| assert channels % n_heads == 0 | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.n_heads = n_heads | |
| self.p_dropout = p_dropout | |
| self.window_size = window_size | |
| self.heads_share = heads_share | |
| self.block_length = block_length | |
| self.proximal_bias = proximal_bias | |
| self.proximal_init = proximal_init | |
| self.attn = None | |
| self.k_channels = channels // n_heads | |
| self.conv_q = nn.Conv1d(channels, channels, 1) | |
| self.conv_k = nn.Conv1d(channels, channels, 1) | |
| self.conv_v = nn.Conv1d(channels, channels, 1) | |
| self.conv_o = nn.Conv1d(channels, out_channels, 1) | |
| self.drop = nn.Dropout(p_dropout) | |
| if window_size is not None: | |
| n_heads_rel = 1 if heads_share else n_heads | |
| rel_stddev = self.k_channels**-0.5 | |
| self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | |
| self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) | |
| nn.init.xavier_uniform_(self.conv_q.weight) | |
| nn.init.xavier_uniform_(self.conv_k.weight) | |
| nn.init.xavier_uniform_(self.conv_v.weight) | |
| nn.init.xavier_uniform_(self.conv_o.weight) | |
| if proximal_init: | |
| with torch.no_grad(): | |
| self.conv_k.weight.copy_(self.conv_q.weight) | |
| self.conv_k.bias.copy_(self.conv_q.bias) | |
| def forward(self, x, c, attn_mask=None): | |
| q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c) | |
| x, self.attn = self.attention(q, k, v, mask=attn_mask) | |
| return self.conv_o(x) | |
| def attention(self, query, key, value, mask=None): | |
| b, d, t_s, t_t = (*key.size(), query.size(2)) | |
| query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | |
| key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | |
| scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | |
| if self.window_size is not None: | |
| assert (t_s == t_t) | |
| scores += self._relative_position_to_absolute_position(self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), self._get_relative_embeddings(self.emb_rel_k, t_s))) | |
| if self.proximal_bias: | |
| assert t_s == t_t | |
| scores += self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) | |
| if mask is not None: | |
| scores = scores.masked_fill(mask == 0, -1e4) | |
| if self.block_length is not None: | |
| assert (t_s == t_t) | |
| scores = scores.masked_fill((torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)) == 0, -1e4) | |
| p_attn = self.drop(F.softmax(scores, dim=-1)) | |
| output = torch.matmul(p_attn, value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)) | |
| if self.window_size is not None: output += self._matmul_with_relative_values(self._absolute_position_to_relative_position(p_attn), self._get_relative_embeddings(self.emb_rel_v, t_s)) | |
| return (output.transpose(2, 3).contiguous().view(b, d, t_t)), p_attn | |
| def _matmul_with_relative_values(self, x, y): | |
| return torch.matmul(x, y.unsqueeze(0)) | |
| def _matmul_with_relative_keys(self, x, y): | |
| return torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | |
| def _get_relative_embeddings(self, relative_embeddings, length): | |
| pad_length = max(length - (self.window_size + 1), 0) | |
| slice_start_position = max((self.window_size + 1) - length, 0) | |
| return (F.pad(relative_embeddings, convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) if pad_length > 0 else relative_embeddings)[:, slice_start_position:(slice_start_position + 2 * length - 1)] | |
| def _relative_position_to_absolute_position(self, x): | |
| batch, heads, length, _ = x.size() | |
| return F.pad(F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])).view([batch, heads, length * 2 * length]), convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])).view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :] | |
| def _absolute_position_to_relative_position(self, x): | |
| batch, heads, length, _ = x.size() | |
| return F.pad(F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])).view([batch, heads, length**2 + length * (length - 1)]), convert_pad_shape([[0, 0], [0, 0], [length, 0]])).view([batch, heads, length, 2 * length])[:, :, :, 1:] | |
| def _attention_bias_proximal(self, length): | |
| r = torch.arange(length, dtype=torch.float32) | |
| return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs((torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)))), 0), 0) | |
| class FFN(nn.Module): | |
| def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0, activation=None, causal=False): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| self.filter_channels = filter_channels | |
| self.kernel_size = kernel_size | |
| self.p_dropout = p_dropout | |
| self.activation = activation | |
| self.causal = causal | |
| self.padding = self._causal_padding if causal else self._same_padding | |
| self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) | |
| self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) | |
| self.drop = nn.Dropout(p_dropout) | |
| def forward(self, x, x_mask): | |
| x = self.conv_1(self.padding(x * x_mask)) | |
| return self.conv_2(self.padding(self.drop(((x * torch.sigmoid(1.702 * x)) if self.activation == "gelu" else torch.relu(x))) * x_mask)) * x_mask | |
| def _causal_padding(self, x): | |
| if self.kernel_size == 1: return x | |
| return F.pad(x, convert_pad_shape([[0, 0], [0, 0], [(self.kernel_size - 1), 0]])) | |
| def _same_padding(self, x): | |
| if self.kernel_size == 1: return x | |
| return F.pad(x, convert_pad_shape([[0, 0], [0, 0], [((self.kernel_size - 1) // 2), (self.kernel_size // 2)]])) |