Spaces:
Running
on
Zero
Running
on
Zero
Update infer.py
Browse files
infer.py
CHANGED
|
@@ -25,46 +25,61 @@ def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
|
|
| 25 |
return result
|
| 26 |
|
| 27 |
def infer_video(video_filepath: str, size_modifier: int) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
model = RealESRGAN(device, scale=size_modifier)
|
| 29 |
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
| 30 |
|
| 31 |
cap = cv.VideoCapture(video_filepath)
|
| 32 |
|
|
|
|
| 33 |
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
| 34 |
vid_output = tmpfile.name
|
| 35 |
tmpfile.close()
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
vid_output,
|
| 39 |
-
fourcc=
|
| 40 |
-
fps=cap.get(
|
| 41 |
-
frameSize=(int(cap.get(
|
| 42 |
)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
ret, frame = cap.read()
|
| 49 |
if not ret:
|
| 50 |
break
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
frame = Image.fromarray(frame)
|
| 54 |
-
|
| 55 |
upscaled_frame = model.predict(frame.convert('RGB'))
|
| 56 |
-
|
| 57 |
-
upscaled_frame = np.array(upscaled_frame)
|
| 58 |
-
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
|
|
|
| 62 |
vid_writer.write(upscaled_frame)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
vid_writer.release()
|
| 65 |
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
return result
|
| 26 |
|
| 27 |
def infer_video(video_filepath: str, size_modifier: int) -> str:
|
| 28 |
+
# Extract audio from the original video file
|
| 29 |
+
audio = cv2.AudioCapture(video_filepath)
|
| 30 |
+
audio_data = np.frombuffer(audio.readAll(), dtype=np.int16)
|
| 31 |
+
audio_array = np.array(audio_data, dtype=np.int16)
|
| 32 |
+
|
| 33 |
model = RealESRGAN(device, scale=size_modifier)
|
| 34 |
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
|
| 35 |
|
| 36 |
cap = cv.VideoCapture(video_filepath)
|
| 37 |
|
| 38 |
+
# Create a temporary file for the output video
|
| 39 |
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
| 40 |
vid_output = tmpfile.name
|
| 41 |
tmpfile.close()
|
| 42 |
|
| 43 |
+
# Create a VideoWriter object for the output video
|
| 44 |
+
vid_writer = cv2.VideoWriter(
|
| 45 |
vid_output,
|
| 46 |
+
fourcc=cv2.VideoWriter.fourcc(*'mp4v'),
|
| 47 |
+
fps=cap.get(cv2.CAP_PROP_FPS),
|
| 48 |
+
frameSize=(int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
|
| 49 |
)
|
| 50 |
|
| 51 |
+
# Process each frame of the video and write it to the output video
|
| 52 |
+
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 53 |
+
for i in tqdm(range(n_frames)):
|
| 54 |
+
# Read the next frame
|
| 55 |
ret, frame = cap.read()
|
| 56 |
if not ret:
|
| 57 |
break
|
| 58 |
|
| 59 |
+
# Convert the frame to RGB and feed it to the model
|
| 60 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 61 |
frame = Image.fromarray(frame)
|
|
|
|
| 62 |
upscaled_frame = model.predict(frame.convert('RGB'))
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# Convert the upscaled frame back to BGR and write it to the output video
|
| 65 |
+
upscaled_frame = np.array(upscaled_frame)
|
| 66 |
+
upscaled_frame = cv2.cvtColor(upscaled_frame, cv2.COLOR_RGB2BGR)
|
| 67 |
|
| 68 |
+
# Write the upscaled frame to the output video
|
| 69 |
vid_writer.write(upscaled_frame)
|
| 70 |
|
| 71 |
+
# Release the VideoCapture and VideoWriter objects
|
| 72 |
+
cap.release()
|
| 73 |
vid_writer.release()
|
| 74 |
|
| 75 |
+
# Create a new VideoFileClip object from the output video
|
| 76 |
+
output_clip = mpy.VideoFileClip(vid_output)
|
| 77 |
|
| 78 |
+
# Add the audio back to the output video
|
| 79 |
+
output_clip = output_clip.set_audio(mpy.AudioFileClip(video_filepath, fps=output_clip.fps))
|
| 80 |
|
| 81 |
+
# Save the output video to a new file
|
| 82 |
+
output_clip.write_videofile(f'output_{video_filepath}')
|
| 83 |
+
|
| 84 |
+
return f'output_{video_filepath}'
|
| 85 |
+
|