Spaces:
Runtime error
Runtime error
| import torch | |
| import numpy as np | |
| import os | |
| import time | |
| import random | |
| import string | |
| import cv2 | |
| from backend import memory_management | |
| def prepare_free_memory(aggressive=False): | |
| if aggressive: | |
| memory_management.unload_all_models() | |
| print('Cleanup all memory.') | |
| return | |
| memory_management.free_memory(memory_required=memory_management.minimum_inference_memory(), | |
| device=memory_management.get_torch_device()) | |
| print('Cleanup minimal inference memory.') | |
| return | |
| def apply_circular_forge(model, tiling_enabled=False): | |
| if model.tiling_enabled == tiling_enabled: | |
| return | |
| print(f'Tiling: {tiling_enabled}') | |
| model.tiling_enabled = tiling_enabled | |
| # def flatten(el): | |
| # flattened = [flatten(children) for children in el.children()] | |
| # res = [el] | |
| # for c in flattened: | |
| # res += c | |
| # return res | |
| # | |
| # layers = flatten(model) | |
| # | |
| # for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]: | |
| # layer.padding_mode = 'circular' if tiling_enabled else 'zeros' | |
| print(f'Tiling is currently under maintenance and unavailable. Sorry for the inconvenience.') | |
| return | |
| def HWC3(x): | |
| assert x.dtype == np.uint8 | |
| if x.ndim == 2: | |
| x = x[:, :, None] | |
| assert x.ndim == 3 | |
| H, W, C = x.shape | |
| assert C == 1 or C == 3 or C == 4 | |
| if C == 3: | |
| return x | |
| if C == 1: | |
| return np.concatenate([x, x, x], axis=2) | |
| if C == 4: | |
| color = x[:, :, 0:3].astype(np.float32) | |
| alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
| y = color * alpha + 255.0 * (1.0 - alpha) | |
| y = y.clip(0, 255).astype(np.uint8) | |
| return y | |
| def generate_random_filename(extension=".txt"): | |
| timestamp = time.strftime("%Y%m%d-%H%M%S") | |
| random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5)) | |
| filename = f"{timestamp}-{random_string}{extension}" | |
| return filename | |
| def pytorch_to_numpy(x): | |
| return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] | |
| def numpy_to_pytorch(x): | |
| y = x.astype(np.float32) / 255.0 | |
| y = y[None] | |
| y = np.ascontiguousarray(y.copy()) | |
| y = torch.from_numpy(y).float() | |
| return y | |
| def write_images_to_mp4(frame_list: list, filename=None, fps=6): | |
| from modules.paths_internal import default_output_dir | |
| video_folder = os.path.join(default_output_dir, 'svd') | |
| os.makedirs(video_folder, exist_ok=True) | |
| if filename is None: | |
| filename = generate_random_filename('.mp4') | |
| full_path = os.path.join(video_folder, filename) | |
| try: | |
| import av | |
| except ImportError: | |
| from launch import run_pip | |
| run_pip( | |
| "install imageio[pyav]", | |
| "imageio[pyav]", | |
| ) | |
| import av | |
| options = { | |
| "crf": str(23) | |
| } | |
| output = av.open(full_path, "w") | |
| stream = output.add_stream('libx264', fps, options=options) | |
| stream.width = frame_list[0].shape[1] | |
| stream.height = frame_list[0].shape[0] | |
| for img in frame_list: | |
| frame = av.VideoFrame.from_ndarray(img) | |
| packet = stream.encode(frame) | |
| output.mux(packet) | |
| packet = stream.encode(None) | |
| output.mux(packet) | |
| output.close() | |
| return full_path | |
| def pad64(x): | |
| return int(np.ceil(float(x) / 64.0) * 64 - x) | |
| def safer_memory(x): | |
| # Fix many MAC/AMD problems | |
| return np.ascontiguousarray(x.copy()).copy() | |
| def resize_image_with_pad(img, resolution): | |
| H_raw, W_raw, _ = img.shape | |
| k = float(resolution) / float(min(H_raw, W_raw)) | |
| interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA | |
| H_target = int(np.round(float(H_raw) * k)) | |
| W_target = int(np.round(float(W_raw) * k)) | |
| img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) | |
| H_pad, W_pad = pad64(H_target), pad64(W_target) | |
| img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') | |
| def remove_pad(x): | |
| return safer_memory(x[:H_target, :W_target]) | |
| return safer_memory(img_padded), remove_pad | |
| def lazy_memory_management(model): | |
| required_memory = memory_management.module_size(model) + memory_management.minimum_inference_memory() | |
| memory_management.free_memory(required_memory, device=memory_management.get_torch_device()) | |
| return | |