Spaces:
Runtime error
Runtime error
| # import torch | |
| # from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
| # import gradio as gr | |
| # from PIL import Image | |
| # # Load model and processor | |
| # model_name = "google/pix2struct-docvqa-large" | |
| # model = Pix2StructForConditionalGeneration.from_pretrained(model_name) | |
| # processor = Pix2StructProcessor.from_pretrained(model_name) | |
| # def process_image(image_path): | |
| # try: | |
| # # Load the image | |
| # image = Image.open(image_path).convert("RGB") | |
| # # Prepare the input | |
| # inputs = processor(images=image, text="What does this image say?", return_tensors="pt") | |
| # # Generate prediction | |
| # output = model.generate(**inputs) | |
| # # Decode the output | |
| # solution = processor.decode(output[0], skip_special_tokens=True) | |
| # return solution | |
| # except Exception as e: | |
| # return f"Error processing image: {str(e)}" | |
| # def predict(image): | |
| # """Handles image input for Gradio.""" | |
| # return process_image(image) | |
| # # Gradio app | |
| # iface = gr.Interface( | |
| # fn=predict, | |
| # inputs=gr.Image(type="filepath"), | |
| # outputs="text", | |
| # title="Image Text Solution" | |
| # ) | |
| # if __name__ == "__main__": | |
| # iface.launch() | |