Spaces:
Runtime error
Runtime error
Commit
·
2ca9e8d
0
Parent(s):
Duplicate from p4vv37/CodeBERT_CodeReviewer
Browse filesCo-authored-by: Paweł <p4vv37@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +287 -0
- requirements.txt +4 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CodeBERT CodeReviewer
|
| 3 |
+
emoji: 😻
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.23.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: p4vv37/CodeBERT_CodeReviewer
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import CrossEntropyLoss
|
| 5 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM, T5Config
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
MAX_SOURCE_LENGTH = 512
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ReviewerModel(T5ForConditionalGeneration):
|
| 12 |
+
|
| 13 |
+
def __init__(self, config):
|
| 14 |
+
super().__init__(config)
|
| 15 |
+
self.cls_head = nn.Linear(self.config.d_model, 2, bias=True)
|
| 16 |
+
self.init()
|
| 17 |
+
|
| 18 |
+
def init(self):
|
| 19 |
+
nn.init.xavier_uniform_(self.lm_head.weight)
|
| 20 |
+
factor = self.config.initializer_factor
|
| 21 |
+
self.cls_head.weight.data.normal_(mean=0.0, \
|
| 22 |
+
std=factor * ((self.config.d_model) ** -0.5))
|
| 23 |
+
self.cls_head.bias.data.zero_()
|
| 24 |
+
|
| 25 |
+
def forward(
|
| 26 |
+
self, *argv, **kwargs
|
| 27 |
+
):
|
| 28 |
+
r"""
|
| 29 |
+
Doc from Huggingface transformers:
|
| 30 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
| 31 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
|
| 32 |
+
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
|
| 33 |
+
labels in ``[0, ..., config.vocab_size]``
|
| 34 |
+
Returns:
|
| 35 |
+
Examples::
|
| 36 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 37 |
+
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
| 38 |
+
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
| 39 |
+
>>> # training
|
| 40 |
+
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
| 41 |
+
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids
|
| 42 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
| 43 |
+
>>> loss = outputs.loss
|
| 44 |
+
>>> logits = outputs.logits
|
| 45 |
+
>>> # inference
|
| 46 |
+
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
| 47 |
+
>>> outputs = model.generate(input_ids)
|
| 48 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 49 |
+
>>> # studies have shown that owning a dog is good for you.
|
| 50 |
+
"""
|
| 51 |
+
if "cls" in kwargs:
|
| 52 |
+
assert (
|
| 53 |
+
"input_ids" in kwargs and \
|
| 54 |
+
"labels" in kwargs and \
|
| 55 |
+
"attention_mask" in kwargs
|
| 56 |
+
)
|
| 57 |
+
return self.cls(
|
| 58 |
+
input_ids=kwargs["input_ids"],
|
| 59 |
+
labels=kwargs["labels"],
|
| 60 |
+
attention_mask=kwargs["attention_mask"],
|
| 61 |
+
)
|
| 62 |
+
if "input_labels" in kwargs:
|
| 63 |
+
assert (
|
| 64 |
+
"input_ids" in kwargs and \
|
| 65 |
+
"input_labels" in kwargs and \
|
| 66 |
+
"decoder_input_ids" in kwargs and \
|
| 67 |
+
"attention_mask" in kwargs and \
|
| 68 |
+
"decoder_attention_mask" in kwargs
|
| 69 |
+
), "Please give these arg keys."
|
| 70 |
+
input_ids = kwargs["input_ids"]
|
| 71 |
+
input_labels = kwargs["input_labels"]
|
| 72 |
+
decoder_input_ids = kwargs["decoder_input_ids"]
|
| 73 |
+
attention_mask = kwargs["attention_mask"]
|
| 74 |
+
decoder_attention_mask = kwargs["decoder_attention_mask"]
|
| 75 |
+
if "encoder_loss" not in kwargs:
|
| 76 |
+
encoder_loss = True
|
| 77 |
+
else:
|
| 78 |
+
encoder_loss = kwargs["encoder_loss"]
|
| 79 |
+
return self.review_forward(input_ids, input_labels, decoder_input_ids, attention_mask,
|
| 80 |
+
decoder_attention_mask, encoder_loss)
|
| 81 |
+
return super().forward(*argv, **kwargs)
|
| 82 |
+
|
| 83 |
+
def cls(
|
| 84 |
+
self,
|
| 85 |
+
input_ids,
|
| 86 |
+
labels,
|
| 87 |
+
attention_mask,
|
| 88 |
+
):
|
| 89 |
+
encoder_outputs = self.encoder( \
|
| 90 |
+
input_ids=input_ids,
|
| 91 |
+
attention_mask=attention_mask,
|
| 92 |
+
output_attentions=False,
|
| 93 |
+
return_dict=False
|
| 94 |
+
)
|
| 95 |
+
hidden_states = encoder_outputs[0]
|
| 96 |
+
first_hidden = hidden_states[:, 0, :]
|
| 97 |
+
first_hidden = nn.Dropout(0.3)(first_hidden)
|
| 98 |
+
logits = self.cls_head(first_hidden)
|
| 99 |
+
loss_fct = CrossEntropyLoss()
|
| 100 |
+
if labels != None:
|
| 101 |
+
loss = loss_fct(logits, labels)
|
| 102 |
+
return loss
|
| 103 |
+
return logits
|
| 104 |
+
|
| 105 |
+
def review_forward(
|
| 106 |
+
self,
|
| 107 |
+
input_ids,
|
| 108 |
+
input_labels,
|
| 109 |
+
decoder_input_ids,
|
| 110 |
+
attention_mask,
|
| 111 |
+
decoder_attention_mask,
|
| 112 |
+
encoder_loss=True
|
| 113 |
+
):
|
| 114 |
+
encoder_outputs = self.encoder( \
|
| 115 |
+
input_ids=input_ids,
|
| 116 |
+
attention_mask=attention_mask,
|
| 117 |
+
output_attentions=False,
|
| 118 |
+
return_dict=False
|
| 119 |
+
)
|
| 120 |
+
hidden_states = encoder_outputs[0]
|
| 121 |
+
decoder_inputs = self._shift_right(decoder_input_ids)
|
| 122 |
+
# Decode
|
| 123 |
+
decoder_outputs = self.decoder(
|
| 124 |
+
input_ids=decoder_inputs,
|
| 125 |
+
attention_mask=decoder_attention_mask,
|
| 126 |
+
encoder_hidden_states=hidden_states,
|
| 127 |
+
encoder_attention_mask=attention_mask,
|
| 128 |
+
output_attentions=False,
|
| 129 |
+
return_dict=False
|
| 130 |
+
)
|
| 131 |
+
sequence_output = decoder_outputs[0]
|
| 132 |
+
if self.config.tie_word_embeddings: # this is True default
|
| 133 |
+
sequence_output = sequence_output * (self.model_dim ** -0.5)
|
| 134 |
+
if encoder_loss:
|
| 135 |
+
# print(self.encoder.get_input_embeddings().weight.shape)
|
| 136 |
+
cls_logits = nn.functional.linear(hidden_states, self.encoder.get_input_embeddings().weight)
|
| 137 |
+
# cls_logits = self.cls_head(hidden_states)
|
| 138 |
+
lm_logits = self.lm_head(sequence_output)
|
| 139 |
+
if decoder_input_ids is not None:
|
| 140 |
+
lm_loss_fct = CrossEntropyLoss(ignore_index=0) # Warning: PAD_ID should be 0
|
| 141 |
+
loss = lm_loss_fct(lm_logits.view(-1, lm_logits.size(-1)), decoder_input_ids.view(-1))
|
| 142 |
+
if encoder_loss and input_labels is not None:
|
| 143 |
+
cls_loss_fct = CrossEntropyLoss(ignore_index=-100)
|
| 144 |
+
loss += cls_loss_fct(cls_logits.view(-1, cls_logits.size(-1)), input_labels.view(-1))
|
| 145 |
+
return loss
|
| 146 |
+
return cls_logits, lm_logits
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def prepare_models():
|
| 150 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")
|
| 151 |
+
|
| 152 |
+
tokenizer.special_dict = {
|
| 153 |
+
f"<e{i}>": tokenizer.get_vocab()[f"<e{i}>"] for i in range(99, -1, -1)
|
| 154 |
+
}
|
| 155 |
+
tokenizer.mask_id = tokenizer.get_vocab()["<mask>"]
|
| 156 |
+
tokenizer.bos_id = tokenizer.get_vocab()["<s>"]
|
| 157 |
+
tokenizer.pad_id = tokenizer.get_vocab()["<pad>"]
|
| 158 |
+
tokenizer.eos_id = tokenizer.get_vocab()["</s>"]
|
| 159 |
+
tokenizer.msg_id = tokenizer.get_vocab()["<msg>"]
|
| 160 |
+
tokenizer.keep_id = tokenizer.get_vocab()["<keep>"]
|
| 161 |
+
tokenizer.add_id = tokenizer.get_vocab()["<add>"]
|
| 162 |
+
tokenizer.del_id = tokenizer.get_vocab()["<del>"]
|
| 163 |
+
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
|
| 164 |
+
tokenizer.end_id = tokenizer.get_vocab()["<end>"]
|
| 165 |
+
|
| 166 |
+
config = T5Config.from_pretrained("microsoft/codereviewer")
|
| 167 |
+
model = ReviewerModel.from_pretrained("microsoft/codereviewer", config=config)
|
| 168 |
+
|
| 169 |
+
model.eval()
|
| 170 |
+
return tokenizer, model
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def pad_assert(tokenizer, source_ids):
|
| 174 |
+
source_ids = source_ids[:MAX_SOURCE_LENGTH - 2]
|
| 175 |
+
source_ids = [tokenizer.bos_id] + source_ids + [tokenizer.eos_id]
|
| 176 |
+
pad_len = MAX_SOURCE_LENGTH - len(source_ids)
|
| 177 |
+
source_ids += [tokenizer.pad_id] * pad_len
|
| 178 |
+
assert len(source_ids) == MAX_SOURCE_LENGTH, "Not equal length."
|
| 179 |
+
return source_ids
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def encode_diff(tokenizer, diff, msg, source):
|
| 183 |
+
difflines = diff.split("\n")[1:] # remove start @@
|
| 184 |
+
difflines = [line for line in difflines if len(line.strip()) > 0]
|
| 185 |
+
map_dic = {"-": 0, "+": 1, " ": 2}
|
| 186 |
+
|
| 187 |
+
def f(s):
|
| 188 |
+
if s in map_dic:
|
| 189 |
+
return map_dic[s]
|
| 190 |
+
else:
|
| 191 |
+
return 2
|
| 192 |
+
|
| 193 |
+
labels = [f(line[0]) for line in difflines]
|
| 194 |
+
difflines = [line[1:].strip() for line in difflines]
|
| 195 |
+
inputstr = "<s>" + source + "</s>"
|
| 196 |
+
inputstr += "<msg>" + msg
|
| 197 |
+
for label, line in zip(labels, difflines):
|
| 198 |
+
if label == 1:
|
| 199 |
+
inputstr += "<add>" + line
|
| 200 |
+
elif label == 0:
|
| 201 |
+
inputstr += "<del>" + line
|
| 202 |
+
else:
|
| 203 |
+
inputstr += "<keep>" + line
|
| 204 |
+
source_ids = tokenizer.encode(inputstr, max_length=MAX_SOURCE_LENGTH, truncation=True)[1:-1]
|
| 205 |
+
source_ids = pad_assert(tokenizer, source_ids)
|
| 206 |
+
return source_ids
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class FileDiffs(object):
|
| 210 |
+
def __init__(self, diff_string):
|
| 211 |
+
diff_array = diff_string.split("\n")
|
| 212 |
+
self.file_name = diff_array[0]
|
| 213 |
+
self.file_path = self.file_name.split("a/", 1)[1].rsplit("b/", 1)[0]
|
| 214 |
+
self.diffs = list()
|
| 215 |
+
for line in diff_array[4:]:
|
| 216 |
+
if line.startswith("@@"):
|
| 217 |
+
self.diffs.append(str())
|
| 218 |
+
self.diffs[-1] += "\n" + line
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def review_commit(user="p4vv37", repository="ueflow", commit="610a8c7b02b946bc9e5e26e6dacbba0e2abba259"):
|
| 222 |
+
tokenizer, model = prepare_models()
|
| 223 |
+
|
| 224 |
+
# Get diff and commit metadata from GitHub API
|
| 225 |
+
commit_metadata = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}").json()
|
| 226 |
+
msg = commit_metadata["commit"]["message"]
|
| 227 |
+
diff_data = requests.get(F"https://api.github.com/repos/{user}/{repository}/commits/{commit}",
|
| 228 |
+
headers={"Accept": "application/vnd.github.diff"})
|
| 229 |
+
code_diff = diff_data.text
|
| 230 |
+
|
| 231 |
+
# Parse diff into FileDiffs objects
|
| 232 |
+
files_diffs = list()
|
| 233 |
+
for file in code_diff.split("diff --git"):
|
| 234 |
+
if len(file) > 0:
|
| 235 |
+
fd = FileDiffs(file)
|
| 236 |
+
files_diffs.append(fd)
|
| 237 |
+
|
| 238 |
+
# Generate comments for each diff
|
| 239 |
+
output = ""
|
| 240 |
+
for fd in files_diffs:
|
| 241 |
+
output += F"File:{fd.file_path}\n"
|
| 242 |
+
source = requests.get(F"https://raw.githubusercontent.com/{user}/{repository}/^{commit}/{fd.file_path}").text
|
| 243 |
+
|
| 244 |
+
for diff in fd.diffs:
|
| 245 |
+
inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
|
| 246 |
+
inputs_mask = inputs.ne(tokenizer.pad_id)
|
| 247 |
+
logits = model(
|
| 248 |
+
input_ids=inputs,
|
| 249 |
+
cls=True,
|
| 250 |
+
attention_mask=inputs_mask,
|
| 251 |
+
labels=None,
|
| 252 |
+
use_cache=True,
|
| 253 |
+
num_beams=5,
|
| 254 |
+
early_stopping=True,
|
| 255 |
+
max_length=100
|
| 256 |
+
)
|
| 257 |
+
needs_review = torch.argmax(logits, dim=-1).cpu().numpy()[0]
|
| 258 |
+
if not needs_review:
|
| 259 |
+
continue
|
| 260 |
+
preds = model.generate(inputs,
|
| 261 |
+
attention_mask=inputs_mask,
|
| 262 |
+
use_cache=True,
|
| 263 |
+
num_beams=5,
|
| 264 |
+
early_stopping=True,
|
| 265 |
+
max_length=100,
|
| 266 |
+
num_return_sequences=2
|
| 267 |
+
)
|
| 268 |
+
preds = list(preds.cpu().numpy())
|
| 269 |
+
pred_nls = [tokenizer.decode(_id[2:], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 270 |
+
for _id in preds]
|
| 271 |
+
output += diff + "\n#######\nComment:\n#######\n" + pred_nls[0] + "\n#######\n"
|
| 272 |
+
return output
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
description = "An interface for running " \
|
| 276 |
+
"\"Microsoft CodeBERT CodeReviewer: Pre-Training for Automating Code Review Activities.\" " \
|
| 277 |
+
"(microsoft/codereviewer) on GitHub commits."
|
| 278 |
+
examples = [
|
| 279 |
+
["p4vv37", "ueflow", "610a8c7b02b946bc9e5e26e6dacbba0e2abba259"],
|
| 280 |
+
["microsoft", "vscode", "378b0d711f6b82ac59b47fb246906043a6fb995a"],
|
| 281 |
+
]
|
| 282 |
+
iface = gr.Interface(fn=review_commit,
|
| 283 |
+
description=description,
|
| 284 |
+
inputs=["text", "text", "text"],
|
| 285 |
+
outputs="text",
|
| 286 |
+
examples=examples)
|
| 287 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
requests
|
| 3 |
+
gradio
|
| 4 |
+
torch
|