Spaces:
Sleeping
Sleeping
File size: 49,851 Bytes
1eb76aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 |
import os
import re
import json
import numpy as np
from typing import List, Dict, Any, Optional, Tuple, Union
from dataclasses import dataclass
from pathlib import Path
# Core libraries
import torch
from transformers import (
AutoTokenizer, AutoModel, AutoModelForTokenClassification,
TrainingArguments, Trainer, pipeline, DataCollatorForTokenClassification
)
from torch.utils.data import Dataset
import torch.nn.functional as F
# Vector database
import chromadb
from chromadb.config import Settings
# Utilities
import logging
from tqdm import tqdm
import pandas as pd
from sklearn.model_selection import train_test_split
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class MedicalEntity:
"""Structure pour les entités médicales extraites par NER"""
exam_types: List[Tuple[str, float]] # (entity, confidence)
specialties: List[Tuple[str, float]]
anatomical_regions: List[Tuple[str, float]]
pathologies: List[Tuple[str, float]]
medical_procedures: List[Tuple[str, float]]
measurements: List[Tuple[str, float]]
medications: List[Tuple[str, float]]
symptoms: List[Tuple[str, float]]
class MedicalNERDataset(Dataset):
"""Dataset personnalisé pour l'entraînement NER médical"""
def __init__(self, texts, labels, tokenizer, max_length=512):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
labels = self.labels[idx]
# Tokenisation
encoding = self.tokenizer(
text,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_offsets_mapping=True,
return_tensors='pt'
)
# Alignement des labels avec les tokens
aligned_labels = self._align_labels_with_tokens(
labels, encoding.offset_mapping.squeeze().tolist()
)
return {
'input_ids': encoding.input_ids.flatten(),
'attention_mask': encoding.attention_mask.flatten(),
'labels': torch.tensor(aligned_labels, dtype=torch.long)
}
def _align_labels_with_tokens(self, labels, offset_mapping):
"""Aligne les labels BIO avec les tokens du tokenizer"""
aligned_labels = []
label_idx = 0
for start, end in offset_mapping:
if start == 0 and end == 0: # Token spécial [CLS], [SEP], [PAD]
aligned_labels.append(-100) # Ignore dans la loss
else:
if label_idx < len(labels):
aligned_labels.append(labels[label_idx])
label_idx += 1
else:
aligned_labels.append(0) # O (Outside)
return aligned_labels
class AdvancedMedicalNER:
"""NER médical avancé basé sur CamemBERT-Bio fine-tuné"""
def __init__(self, model_name: str = "auto", cache_dir: str = "./models_cache"):
self.cache_dir = Path(cache_dir)
self.cache_dir.mkdir(exist_ok=True)
# Auto-détection du meilleur modèle NER médical disponible
self.model_name = self._select_best_model(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Labels BIO pour entités médicales
self.entity_labels = [
"O", # Outside
"B-EXAM_TYPES", "I-EXAM_TYPES", # Types d'examens
"B-SPECIALTIES", "I-SPECIALTIES", # Spécialités médicales
"B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS", # Régions anatomiques
"B-PATHOLOGIES", "I-PATHOLOGIES", # Pathologies
"B-PROCEDURES", "I-PROCEDURES", # Procédures médicales
"B-MEASUREMENTS", "I-MEASUREMENTS", # Mesures/valeurs
"B-MEDICATIONS", "I-MEDICATIONS", # Médicaments
"B-SYMPTOMS", "I-SYMPTOMS" # Symptômes
]
self.id2label = {i: label for i, label in enumerate(self.entity_labels)}
self.label2id = {label: i for i, label in enumerate(self.entity_labels)}
# Chargement du modèle NER
self._load_ner_model()
def _select_best_model(self, model_name: str) -> str:
"""Sélection automatique du meilleur modèle NER médical"""
if model_name != "auto":
return model_name
# Liste des modèles par ordre de préférence
preferred_models = [
"almanach/camembert-bio-base", # CamemBERT Bio français
"Dr-BERT/DrBERT-7GB", # DrBERT spécialisé
"emilyalsentzer/Bio_ClinicalBERT", # Bio Clinical BERT
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"dmis-lab/biobert-base-cased-v1.2", # BioBERT
"camembert-base" # Fallback CamemBERT standard
]
for model in preferred_models:
try:
# Test de disponibilité
AutoTokenizer.from_pretrained(model, cache_dir=self.cache_dir)
logger.info(f"Modèle sélectionné: {model}")
return model
except:
continue
# Fallback ultime
logger.warning("Utilisation du modèle de base camembert-base")
return "camembert-base"
def _load_ner_model(self):
"""Charge ou crée le modèle NER fine-tuné"""
fine_tuned_path = self.cache_dir / "medical_ner_model"
if fine_tuned_path.exists():
logger.info("Chargement du modèle NER fine-tuné existant")
self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_path)
self.ner_model = AutoModelForTokenClassification.from_pretrained(fine_tuned_path)
else:
logger.info("Création d'un nouveau modèle NER médical")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=self.cache_dir)
# Modèle pour classification de tokens (NER)
self.ner_model = AutoModelForTokenClassification.from_pretrained(
self.model_name,
num_labels=len(self.entity_labels),
id2label=self.id2label,
label2id=self.label2id,
cache_dir=self.cache_dir
)
self.ner_model.to(self.device)
# Pipeline NER
self.ner_pipeline = pipeline(
"token-classification",
model=self.ner_model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1,
aggregation_strategy="simple"
)
def extract_entities(self, text: str) -> MedicalEntity:
"""Extraction d'entités avec le modèle NER fine-tuné"""
# Prédiction NER
try:
ner_results = self.ner_pipeline(text)
except Exception as e:
logger.error(f"Erreur NER: {e}")
return MedicalEntity([], [], [], [], [], [], [], [])
# Groupement des entités par type
entities = {
"EXAM_TYPES": [],
"SPECIALTIES": [],
"ANATOMICAL_REGIONS": [],
"PATHOLOGIES": [],
"PROCEDURES": [],
"MEASUREMENTS": [],
"MEDICATIONS": [],
"SYMPTOMS": []
}
for result in ner_results:
entity_type = result['entity_group'].replace('B-', '').replace('I-', '')
entity_text = result['word']
confidence = result['score']
if entity_type in entities and confidence > 0.7: # Seuil de confiance
entities[entity_type].append((entity_text, confidence))
return MedicalEntity(
exam_types=entities["EXAM_TYPES"],
specialties=entities["SPECIALTIES"],
anatomical_regions=entities["ANATOMICAL_REGIONS"],
pathologies=entities["PATHOLOGIES"],
medical_procedures=entities["PROCEDURES"],
measurements=entities["MEASUREMENTS"],
medications=entities["MEDICATIONS"],
symptoms=entities["SYMPTOMS"]
)
def load_dataset(self, dataset_path: str) -> List[Dict]:
"""Charge le dataset depuis le fichier JSON"""
try:
with open(dataset_path, 'r', encoding='utf-8') as f:
# Chaque ligne est un objet JSON séparé
data = []
for line in f:
if line.strip():
data.append(json.loads(line.strip()))
return data
except Exception as e:
logger.error(f"Erreur lors du chargement du dataset: {e}")
return []
"""
def _text_to_bio_labels(self, text: str, entities_dict: Dict[str, List[str]]) -> List[int]:
#Convertit le texte et les entités en labels BI en utilisant les offsets
# Tokenisation du texte
tokens = self.tokenizer.tokenize(text)
labels = [0] * len(tokens) # Initialisation avec "O" (Outside)
# Mapping des types d'entités vers les labels BIO
entity_type_mapping = {
"exam_types": ("B-EXAM_TYPES", "I-EXAM_TYPES"),
"specialties": ("B-SPECIALTIES", "I-SPECIALTIES"),
"anatomical_regions": ("B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS"),
"pathologies": ("B-PATHOLOGIES", "I-PATHOLOGIES"),
"procedures": ("B-PROCEDURES", "I-PROCEDURES"),
"measurements": ("B-MEASUREMENTS", "I-MEASUREMENTS"),
"medications": ("B-MEDICATIONS", "I-MEDICATIONS"),
"symptoms": ("B-SYMPTOMS", "I-SYMPTOMS")
}
# Attribution des labels pour chaque type d'entité
for entity_type, entity_list in entities_dict.items():
if entity_type in entity_type_mapping and entity_list:
b_label, i_label = entity_type_mapping[entity_type]
b_label_id = self.label2id[b_label]
i_label_id = self.label2id[i_label]
for entity in entity_list:
# Recherche de l'entité dans le texte tokenizé
entity_tokens = self.tokenizer.tokenize(entity.lower())
text_lower = text.lower()
# Recherche de la position de l'entité
start_pos = text_lower.find(entity.lower())
if start_pos != -1:
# Approximation de la position dans les tokens
# (méthode simplifiée - pourrait être améliorée)
char_to_token_ratio = len(tokens) / len(text)
approx_token_start = int(start_pos * char_to_token_ratio)
approx_token_end = min(
len(tokens),
approx_token_start + len(entity_tokens)
)
# Attribution des labels BIO
for i in range(approx_token_start, approx_token_end):
if i < len(labels):
if i == approx_token_start:
labels[i] = b_label_id # B- pour le premier token
else:
labels[i] = i_label_id # I- pour les tokens suivants
return labels
"""
def _text_to_bio_labels(self, text: str, entities_dict: Dict[str, List[str]]) -> List[int]:
"""Convertit le texte et les entités en labels BIO en utilisant les offsets (robuste)"""
# Encodage avec offsets
encoding = self.tokenizer(
text,
return_offsets_mapping=True,
add_special_tokens=False
)
tokens = encoding.tokens()
offsets = encoding["offset_mapping"]
labels = [self.label2id["O"]] * len(tokens) # Initialisation avec "O"
# Mapping des types d'entités vers les labels BIO
entity_type_mapping = {
"exam_types": ("B-EXAM_TYPES", "I-EXAM_TYPES"),
"specialties": ("B-SPECIALTIES", "I-SPECIALTIES"),
"anatomical_regions": ("B-ANATOMICAL_REGIONS", "I-ANATOMICAL_REGIONS"),
"pathologies": ("B-PATHOLOGIES", "I-PATHOLOGIES"),
"procedures": ("B-PROCEDURES", "I-PROCEDURES"),
"measurements": ("B-MEASUREMENTS", "I-MEASUREMENTS"),
"medications": ("B-MEDICATIONS", "I-MEDICATIONS"),
"symptoms": ("B-SYMPTOMS", "I-SYMPTOMS")
}
# Attribution des labels
for entity_type, entity_list in entities_dict.items():
if entity_type in entity_type_mapping and entity_list:
b_label, i_label = entity_type_mapping[entity_type]
b_label_id = self.label2id[b_label]
i_label_id = self.label2id[i_label]
for entity in entity_list:
start_char = text.lower().find(entity.lower())
if start_char == -1:
continue
end_char = start_char + len(entity)
# Trouver tous les tokens qui chevauchent l’entité
entity_token_idxs = [
i for i, (tok_start, tok_end) in enumerate(offsets)
if tok_start < end_char and tok_end > start_char
]
if not entity_token_idxs:
continue
# Attribution BIO
for j, tok_idx in enumerate(entity_token_idxs):
if j == 0:
labels[tok_idx] = b_label_id
else:
labels[tok_idx] = i_label_id
return labels
def _prepare_training_data(self, templates_data: List[Dict]) -> Dict:
"""Prépare les données d'entraînement pour le NER à partir du dataset"""
if not templates_data:
logger.warning("Aucune donnée de template fournie")
return {'train': MedicalNERDataset([], [], self.tokenizer)}
texts = []
labels = []
logger.info(f"Préparation de {len(templates_data)} échantillons pour l'entraînement")
for sample in tqdm(templates_data, desc="Conversion en format BIO"):
try:
text = sample['text']
entities_dict = sample['labels']
# Conversion en labels BIO
bio_labels = self._text_to_bio_labels(text, entities_dict)
texts.append(text)
labels.append(bio_labels)
except Exception as e:
logger.error(f"Erreur lors du traitement d'un échantillon: {e}")
continue
if not texts:
logger.error("Aucun échantillon valide trouvé pour l'entraînement")
return {'train': MedicalNERDataset([], [], self.tokenizer)}
# Division train/validation si suffisamment de données
if len(texts) > 10:
train_texts, val_texts, train_labels, val_labels = train_test_split(
texts, labels, test_size=0.2, random_state=42
)
train_dataset = MedicalNERDataset(train_texts, train_labels, self.tokenizer)
val_dataset = MedicalNERDataset(val_texts, val_labels, self.tokenizer)
logger.info(f"Dataset divisé: {len(train_texts)} train, {len(val_texts)} validation")
return {'train': train_dataset, 'eval': val_dataset}
else:
train_dataset = MedicalNERDataset(texts, labels, self.tokenizer)
logger.info(f"Dataset d'entraînement: {len(texts)} échantillons")
return {'train': train_dataset}
def fine_tune_on_templates(self, templates_data: List[Dict] = None,
dataset_path: str = "dataset.json",
output_dir: str = None,
epochs: int = 3):
"""Fine-tuning du modèle NER sur des templates médicaux"""
if output_dir is None:
output_dir = self.cache_dir / "medical_ner_model"
# Chargement des données
if templates_data is None:
logger.info(f"Chargement du dataset depuis {dataset_path}")
templates_data = self.load_dataset(dataset_path)
if not templates_data:
logger.error("Aucune donnée disponible pour l'entraînement")
return
logger.info("Début du fine-tuning NER sur templates médicaux")
# Préparation des données d'entraînement
datasets = self._prepare_training_data(templates_data)
if len(datasets['train']) == 0:
logger.error("Dataset d'entraînement vide")
return
# Data collator pour gérer le padding
data_collator = DataCollatorForTokenClassification(
tokenizer=self.tokenizer,
padding=True
)
# Configuration d'entraînement
training_args = TrainingArguments(
output_dir=str(output_dir),
num_train_epochs=epochs,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir=f"{output_dir}/logs",
logging_steps=50,
save_strategy="epoch",
evaluation_strategy="epoch" if 'eval' in datasets else "no",
load_best_model_at_end=True if 'eval' in datasets else False,
metric_for_best_model="eval_loss" if 'eval' in datasets else None,
greater_is_better=False,
remove_unused_columns=False,
)
# Fonction de calcul des métriques
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=2)
# Calcul de l'accuracy en ignorant les labels -100
mask = labels != -100
accuracy = (predictions[mask] == labels[mask]).mean()
return {"accuracy": accuracy}
# Trainer
trainer = Trainer(
model=self.ner_model,
args=training_args,
train_dataset=datasets['train'],
eval_dataset=datasets.get('eval'),
tokenizer=self.tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if 'eval' in datasets else None,
)
# Entraînement
logger.info("Début de l'entraînement...")
trainer.train()
# Sauvegarde
trainer.save_model()
self.tokenizer.save_pretrained(output_dir)
# Recharger le modèle et le pipeline
self._load_ner_model()
logger.info(f"Fine-tuning terminé, modèle sauvé dans {output_dir}")
# Affichage des métriques finales si évaluation disponible
if 'eval' in datasets:
eval_results = trainer.evaluate()
logger.info(f"Métriques finales: {eval_results}")
class AdvancedMedicalEmbedding:
"""Générateur d'embeddings médicaux avancés avec cross-encoder reranking"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
cross_encoder_model: str = "auto"):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.base_model_name = base_model
# Modèle principal pour embeddings
self._load_base_model()
# Cross-encoder pour reranking
self._load_cross_encoder(cross_encoder_model)
def _load_base_model(self):
"""Charge le modèle de base pour les embeddings"""
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model_name)
self.base_model = AutoModel.from_pretrained(self.base_model_name)
self.base_model.to(self.device)
logger.info(f"Modèle de base chargé: {self.base_model_name}")
except Exception as e:
logger.error(f"Erreur chargement modèle de base: {e}")
raise
def _load_cross_encoder(self, model_name: str):
"""Charge le cross-encoder pour reranking"""
if model_name == "auto":
# Sélection automatique du meilleur cross-encoder médical
cross_encoders = [
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
"emilyalsentzer/Bio_ClinicalBERT",
self.base_model_name # Fallback
]
for model in cross_encoders:
try:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model)
self.cross_model = AutoModel.from_pretrained(model)
self.cross_model.to(self.device)
logger.info(f"Cross-encoder chargé: {model}")
break
except:
continue
else:
self.cross_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.cross_model = AutoModel.from_pretrained(model_name)
self.cross_model.to(self.device)
def generate_embedding(self, text: str, entities: MedicalEntity = None) -> np.ndarray:
"""Génère un embedding enrichi pour un texte médical"""
# Tokenisation
inputs = self.tokenizer(
text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Génération embedding
with torch.no_grad():
outputs = self.base_model(**inputs)
# Mean pooling
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
embedding = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Enrichissement avec entités NER
if entities:
embedding = self._enrich_with_ner_entities(embedding, entities)
return embedding.cpu().numpy().flatten().astype(np.float32)
def _enrich_with_ner_entities(self, base_embedding: torch.Tensor, entities: MedicalEntity) -> torch.Tensor:
"""Enrichit l'embedding avec les entités extraites par NER"""
# Concaténer les entités importantes avec leurs scores de confiance
entity_texts = []
confidence_weights = []
for entity_list in [entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]:
for entity_text, confidence in entity_list:
entity_texts.append(entity_text)
confidence_weights.append(confidence)
if not entity_texts:
return base_embedding
# Génération d'embeddings pour les entités
entity_text_combined = " [SEP] ".join(entity_texts)
entity_inputs = self.tokenizer(
entity_text_combined,
padding=True,
truncation=True,
max_length=256,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
entity_outputs = self.base_model(**entity_inputs)
entity_embedding = torch.mean(entity_outputs.last_hidden_state, dim=1)
# Fusion pondérée par les scores de confiance
avg_confidence = np.mean(confidence_weights) if confidence_weights else 0.5
fusion_weight = min(0.4, avg_confidence) # Max 40% pour les entités
enriched_embedding = (1 - fusion_weight) * base_embedding + fusion_weight * entity_embedding
return enriched_embedding
def cross_encoder_rerank(self,
query: str,
candidates: List[Dict],
top_k: int = 3) -> List[Dict]:
"""Reranking avec cross-encoder pour affiner la sélection"""
if len(candidates) <= top_k:
return candidates
reranked_candidates = []
for candidate in candidates:
# Création de la paire query-candidate
pair_text = f"{query} [SEP] {candidate['document']}"
# Tokenisation
inputs = self.cross_tokenizer(
pair_text,
padding=True,
truncation=True,
max_length=512,
return_tensors="pt"
).to(self.device)
# Score de similarité cross-encoder
with torch.no_grad():
outputs = self.cross_model(**inputs)
# Utilisation du [CLS] token pour le score de similarité
cls_embedding = outputs.last_hidden_state[:, 0, :]
similarity_score = torch.sigmoid(torch.mean(cls_embedding)).item()
candidate_copy = candidate.copy()
candidate_copy['cross_encoder_score'] = similarity_score
candidate_copy['final_score'] = (
0.6 * candidate['similarity_score'] +
0.4 * similarity_score
)
reranked_candidates.append(candidate_copy)
# Tri par score final
reranked_candidates.sort(key=lambda x: x['final_score'], reverse=True)
return reranked_candidates[:top_k]
class MedicalTemplateVectorDB:
"""Base de données vectorielle optimisée pour templates médicaux"""
def __init__(self, db_path: str = "./medical_vector_db", collection_name: str = "medical_templates"):
self.db_path = db_path
self.collection_name = collection_name
# ChromaDB avec configuration optimisée
self.client = chromadb.PersistentClient(
path=db_path,
settings=Settings(
anonymized_telemetry=False,
allow_reset=True
)
)
# Collection avec métrique de distance optimisée
try:
self.collection = self.client.get_collection(collection_name)
logger.info(f"Collection '{collection_name}' chargée")
except:
self.collection = self.client.create_collection(
name=collection_name,
metadata={
"hnsw:space": "cosine",
"hnsw:M": 32, # Connectivité du graphe
"hnsw:ef_construction": 200, # Qualité vs vitesse construction
"hnsw:ef_search": 50 # Qualité vs vitesse recherche
}
)
logger.info(f"Collection '{collection_name}' créée avec optimisations HNSW")
def add_template(self,
template_id: str,
template_text: str,
embedding: np.ndarray,
entities: MedicalEntity,
metadata: Dict[str, Any] = None):
"""Ajoute un template avec métadonnées enrichies par NER"""
# Métadonnées automatiques basées sur NER
auto_metadata = {
"exam_types": [entity[0] for entity in entities.exam_types],
"specialties": [entity[0] for entity in entities.specialties],
"anatomical_regions": [entity[0] for entity in entities.anatomical_regions],
"pathologies": [entity[0] for entity in entities.pathologies],
"procedures": [entity[0] for entity in entities.medical_procedures],
"text_length": len(template_text),
"entity_confidence_avg": np.mean([
entity[1] for entity_list in [
entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies
] for entity in entity_list
]) if any([entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]) else 0.0
}
if metadata:
auto_metadata.update(metadata)
self.collection.add(
embeddings=[embedding.tolist()],
documents=[template_text],
metadatas=[auto_metadata],
ids=[template_id]
)
logger.info(f"Template {template_id} ajouté avec métadonnées NER automatiques")
def advanced_search(self,
query_embedding: np.ndarray,
n_results: int = 10,
entity_filters: Dict[str, List[str]] = None,
confidence_threshold: float = 0.0) -> List[Dict]:
"""Recherche avancée avec filtres basés sur entités NER"""
where_clause = {}
# Filtres basés sur entités NER extraites
if entity_filters:
for entity_type, entity_values in entity_filters.items():
if entity_values:
where_clause[entity_type] = {"$in": entity_values}
# Filtre par confiance moyenne des entités
if confidence_threshold > 0:
where_clause["entity_confidence_avg"] = {"$gte": confidence_threshold}
results = self.collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=n_results,
where=where_clause if where_clause else None,
include=["documents", "metadatas", "distances"]
)
# Formatage des résultats
formatted_results = []
for i in range(len(results['ids'][0])):
formatted_results.append({
'id': results['ids'][0][i],
'document': results['documents'][0][i],
'metadata': results['metadatas'][0][i],
'similarity_score': 1 - results['distances'][0][i],
'distance': results['distances'][0][i]
})
return formatted_results
class AdvancedMedicalTemplateProcessor:
"""Processeur avancé avec NER fine-tuné et reranking cross-encoder"""
def __init__(self,
base_model: str = "almanach/camembert-bio-base",
db_path: str = "./advanced_medical_vector_db"):
self.ner_extractor = AdvancedMedicalNER()
self.embedding_generator = AdvancedMedicalEmbedding(base_model)
self.vector_db = MedicalTemplateVectorDB(db_path)
logger.info("Processeur médical avancé initialisé avec NER fine-tuné et cross-encoder reranking")
def process_templates_batch(self,
templates: List[Dict[str, str]] = None,
dataset_path: str = "dataset.json",
batch_size: int = 8,
fine_tune_ner: bool = False) -> None:
"""Traitement avancé avec option de fine-tuning NER"""
# Chargement des données si templates non fournis
if templates is None:
logger.info(f"Chargement des templates depuis {dataset_path}")
templates = self.ner_extractor.load_dataset(dataset_path)
# Conversion du format dataset vers le format attendu
templates = [
{
'id': f"template_{i:04d}",
'text': template['text'],
'metadata': {'labels': template.get('labels', {})}
}
for i, template in enumerate(templates)
]
if fine_tune_ner:
logger.info("Fine-tuning du modèle NER sur les templates...")
# Reconversion pour le fine-tuning
training_data = [
{
'text': template['text'],
'labels': template['metadata'].get('labels', {})
}
for template in templates
]
self.ner_extractor.fine_tune_on_templates(training_data)
logger.info(f"Traitement avancé de {len(templates)} templates")
for i in tqdm(range(0, len(templates), batch_size), desc="Traitement avancé"):
batch = templates[i:i+batch_size]
for template in batch:
try:
template_id = template['id']
template_text = template['text']
metadata = template.get('metadata', {})
# NER avancé
entities = self.ner_extractor.extract_entities(template_text)
# Embedding enrichi
embedding = self.embedding_generator.generate_embedding(template_text, entities)
# Stockage avec métadonnées NER
self.vector_db.add_template(
template_id=template_id,
template_text=template_text,
embedding=embedding,
entities=entities,
metadata=metadata
)
except Exception as e:
logger.error(f"Erreur traitement template {template.get('id', 'unknown')}: {e}")
continue
def find_best_template_with_reranking(self,
transcription: str,
initial_candidates: int = 10,
final_results: int = 3) -> List[Dict]:
"""Recherche optimale avec reranking cross-encoder"""
# 1. Extraction NER de la transcription
query_entities = self.ner_extractor.extract_entities(transcription)
# 2. Génération embedding enrichi
query_embedding = self.embedding_generator.generate_embedding(transcription, query_entities)
# 3. Filtres automatiques basés sur entités extraites
entity_filters = {}
if query_entities.exam_types:
entity_filters['exam_types'] = [entity[0] for entity in query_entities.exam_types]
if query_entities.specialties:
entity_filters['specialties'] = [entity[0] for entity in query_entities.specialties]
if query_entities.anatomical_regions:
entity_filters['anatomical_regions'] = [entity[0] for entity in query_entities.anatomical_regions]
# 4. Recherche vectorielle initiale
initial_candidates_results = self.vector_db.advanced_search(
query_embedding=query_embedding,
n_results=initial_candidates,
entity_filters=entity_filters,
confidence_threshold=0.6
)
# 5. Reranking avec cross-encoder
if len(initial_candidates_results) > final_results:
final_results_reranked = self.embedding_generator.cross_encoder_rerank(
query=transcription,
candidates=initial_candidates_results,
top_k=final_results
)
else:
final_results_reranked = initial_candidates_results
# 6. Enrichissement des résultats avec détails NER
for result in final_results_reranked:
result['query_entities'] = {
'exam_types': query_entities.exam_types,
'specialties': query_entities.specialties,
'anatomical_regions': query_entities.anatomical_regions,
'pathologies': query_entities.pathologies
}
return final_results_reranked
def evaluate_ner_performance(self, test_dataset_path: str = None) -> Dict[str, float]:
"""Évalue les performances du modèle NER fine-tuné"""
if test_dataset_path is None:
logger.warning("Aucun dataset de test fourni pour l'évaluation")
return {}
test_data = self.ner_extractor.load_dataset(test_dataset_path)
if not test_data:
logger.error("Dataset de test vide")
return {}
correct_predictions = 0
total_entities = 0
entity_type_stats = {}
for sample in tqdm(test_data, desc="Évaluation NER"):
text = sample['text']
true_entities = sample['labels']
# Prédiction
predicted_entities = self.ner_extractor.extract_entities(text)
# Conversion en format comparable
predicted_dict = {
'exam_types': [entity[0].lower() for entity in predicted_entities.exam_types],
'specialties': [entity[0].lower() for entity in predicted_entities.specialties],
'anatomical_regions': [entity[0].lower() for entity in predicted_entities.anatomical_regions],
'pathologies': [entity[0].lower() for entity in predicted_entities.pathologies],
'procedures': [entity[0].lower() for entity in predicted_entities.medical_procedures],
'measurements': [entity[0].lower() for entity in predicted_entities.measurements],
'medications': [entity[0].lower() for entity in predicted_entities.medications],
'symptoms': [entity[0].lower() for entity in predicted_entities.symptoms]
}
# Comparaison
for entity_type, true_entities_list in true_entities.items():
if entity_type in predicted_dict:
predicted_entities_list = predicted_dict[entity_type]
# Statistiques par type d'entité
if entity_type not in entity_type_stats:
entity_type_stats[entity_type] = {'correct': 0, 'total': 0}
true_entities_lower = [entity.lower() for entity in true_entities_list]
for true_entity in true_entities_lower:
total_entities += 1
entity_type_stats[entity_type]['total'] += 1
if true_entity in predicted_entities_list:
correct_predictions += 1
entity_type_stats[entity_type]['correct'] += 1
# Calcul des métriques
overall_accuracy = correct_predictions / total_entities if total_entities > 0 else 0
metrics = {
'overall_accuracy': overall_accuracy,
'total_entities': total_entities,
'correct_predictions': correct_predictions
}
# Métriques par type d'entité
for entity_type, stats in entity_type_stats.items():
if stats['total'] > 0:
accuracy = stats['correct'] / stats['total']
metrics[f'{entity_type}_accuracy'] = accuracy
metrics[f'{entity_type}_total'] = stats['total']
logger.info(f"Évaluation NER terminée - Accuracy globale: {overall_accuracy:.4f}")
return metrics
def export_processed_templates(self, output_path: str = "processed_templates.json"):
"""Exporte les templates traités avec leurs embeddings et entités"""
try:
# Récupération de tous les templates de la base vectorielle
all_results = self.vector_db.collection.get(
include=["documents", "metadatas", "embeddings"]
)
processed_templates = []
for i in range(len(all_results['ids'])):
template_data = {
'id': all_results['ids'][i],
'text': all_results['documents'][i],
'metadata': all_results['metadatas'][i],
'embedding': all_results['embeddings'][i] if all_results.get('embeddings') else None
}
processed_templates.append(template_data)
# Sauvegarde
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(processed_templates, f, ensure_ascii=False, indent=2)
logger.info(f"Templates traités exportés vers {output_path}")
logger.info(f"Nombre de templates exportés: {len(processed_templates)}")
except Exception as e:
logger.error(f"Erreur lors de l'export: {e}")
# Utilitaires pour l'analyse et le debugging
class MedicalNERAnalyzer:
"""Outils d'analyse et de debugging pour le système NER médical"""
def __init__(self, processor: AdvancedMedicalTemplateProcessor):
self.processor = processor
def analyze_text(self, text: str) -> Dict:
"""Analyse complète d'un texte médical"""
# Extraction NER
entities = self.processor.ner_extractor.extract_entities(text)
# Génération d'embedding
embedding = self.processor.embedding_generator.generate_embedding(text, entities)
# Statistiques
analysis = {
'text': text,
'text_length': len(text),
'entities': {
'exam_types': entities.exam_types,
'specialties': entities.specialties,
'anatomical_regions': entities.anatomical_regions,
'pathologies': entities.pathologies,
'procedures': entities.medical_procedures,
'measurements': entities.measurements,
'medications': entities.medications,
'symptoms': entities.symptoms
},
'embedding_shape': embedding.shape,
'entity_count_total': sum([
len(entities.exam_types),
len(entities.specialties),
len(entities.anatomical_regions),
len(entities.pathologies),
len(entities.medical_procedures),
len(entities.measurements),
len(entities.medications),
len(entities.symptoms)
]),
'confidence_scores': {
'exam_types': [conf for _, conf in entities.exam_types],
'specialties': [conf for _, conf in entities.specialties],
'anatomical_regions': [conf for _, conf in entities.anatomical_regions],
'pathologies': [conf for _, conf in entities.pathologies]
}
}
return analysis
def compare_entities(self, text1: str, text2: str) -> Dict:
"""Compare les entités extraites de deux textes"""
entities1 = self.processor.ner_extractor.extract_entities(text1)
entities2 = self.processor.ner_extractor.extract_entities(text2)
def entities_to_set(entities):
all_entities = set()
for entity_list in [entities.exam_types, entities.specialties,
entities.anatomical_regions, entities.pathologies]:
for entity, _ in entity_list:
all_entities.add(entity.lower())
return all_entities
set1 = entities_to_set(entities1)
set2 = entities_to_set(entities2)
return {
'text1_entities': list(set1),
'text2_entities': list(set2),
'common_entities': list(set1.intersection(set2)),
'unique_to_text1': list(set1.difference(set2)),
'unique_to_text2': list(set2.difference(set1)),
'similarity_ratio': len(set1.intersection(set2)) / len(set1.union(set2)) if set1.union(set2) else 0
}
def generate_entity_report(self, dataset_path: str) -> Dict:
"""Génère un rapport statistique sur les entités du dataset"""
dataset = self.processor.ner_extractor.load_dataset(dataset_path)
entity_stats = {
'exam_types': {},
'specialties': {},
'anatomical_regions': {},
'pathologies': {},
'procedures': {},
'measurements': {},
'medications': {},
'symptoms': {}
}
total_samples = len(dataset)
for sample in tqdm(dataset, desc="Analyse du dataset"):
labels = sample.get('labels', {})
for entity_type, entities in labels.items():
if entity_type in entity_stats:
for entity in entities:
entity_lower = entity.lower()
if entity_lower not in entity_stats[entity_type]:
entity_stats[entity_type][entity_lower] = 0
entity_stats[entity_type][entity_lower] += 1
# Génération du rapport
report = {
'total_samples': total_samples,
'entity_statistics': {}
}
for entity_type, entity_counts in entity_stats.items():
if entity_counts:
sorted_entities = sorted(entity_counts.items(), key=lambda x: x[1], reverse=True)
report['entity_statistics'][entity_type] = {
'unique_count': len(entity_counts),
'total_occurrences': sum(entity_counts.values()),
'top_10': sorted_entities[:10],
'average_occurrences': sum(entity_counts.values()) / len(entity_counts)
}
return report
# Exemple d'utilisation avancée
def main():
"""Exemple d'utilisation du système avancé avec fine-tuning"""
# Initialisation du processeur avancé
processor = AdvancedMedicalTemplateProcessor()
# 1. Traitement des templates avec fine-tuning NER
print("=== ÉTAPE 1: Traitement et Fine-tuning ===")
processor.process_templates_batch(
dataset_path="dataset.json",
fine_tune_ner=True, # Active le fine-tuning
batch_size=8
)
# 2. Évaluation des performances NER (optionnel, si dataset de test disponible)
print("\n=== ÉTAPE 2: Évaluation des performances ===")
# metrics = processor.evaluate_ner_performance("test_dataset.json")
# print(f"Métriques d'évaluation: {metrics}")
# 3. Analyse d'un texte médical
print("\n=== ÉTAPE 3: Analyse de texte ===")
analyzer = MedicalNERAnalyzer(processor)
test_text = """madame bacon nicole bilan œdème droit gonalgies ostéophytes
incontinence veineuse modérée portions surale droite crurale gauche saphéniennes"""
analysis = analyzer.analyze_text(test_text)
print(f"Analyse du texte:")
print(f"- Nombre total d'entités: {analysis['entity_count_total']}")
print(f"- Types d'examens détectés: {analysis['entities']['exam_types']}")
print(f"- Régions anatomiques: {analysis['entities']['anatomical_regions']}")
print(f"- Pathologies: {analysis['entities']['pathologies']}")
# 4. Recherche avec reranking
print("\n=== ÉTAPE 4: Recherche avec reranking ===")
best_matches = processor.find_best_template_with_reranking(
transcription=test_text,
initial_candidates=15,
final_results=3
)
# Affichage des résultats
for i, match in enumerate(best_matches):
print(f"\n--- Match {i+1} ---")
print(f"Template ID: {match['id']}")
print(f"Score final: {match.get('final_score', match['similarity_score']):.4f}")
print(f"Score cross-encoder: {match.get('cross_encoder_score', 'N/A')}")
print(f"Extrait du texte: {match['document'][:200]}...")
# Affichage des entités détectées dans la query
query_entities = match.get('query_entities', {})
for entity_type, entities in query_entities.items():
if entities:
print(f" - {entity_type}: {[f'{e[0]} ({e[1]:.2f})' for e in entities[:3]]}")
# 5. Export des templates traités
print("\n=== ÉTAPE 5: Export des résultats ===")
processor.export_processed_templates("processed_medical_templates.json")
# 6. Génération d'un rapport sur le dataset
print("\n=== ÉTAPE 6: Rapport du dataset ===")
report = analyzer.generate_entity_report("dataset.json")
print(f"Rapport généré pour {report['total_samples']} échantillons")
for entity_type, stats in report['entity_statistics'].items():
if stats['unique_count'] > 0:
print(f"\n{entity_type.upper()}:")
print(f" - Entités uniques: {stats['unique_count']}")
print(f" - Occurrences totales: {stats['total_occurrences']}")
print(f" - Top 3: {stats['top_10'][:3]}")
if __name__ == "__main__":
main() |