#!/usr/bin/env python3 """ Medical Transcription Retriever from Langfuse Retrieves medical transcriptions from Langfuse traces and saves them locally. """ import os import json import time from datetime import datetime, timedelta from dotenv import load_dotenv from langfuse import Langfuse # Load environment variables load_dotenv() class MedicalTranscriptionRetriever: """Retrieves medical transcriptions from Langfuse traces.""" def __init__(self): """Initialize the retriever with Langfuse credentials.""" self.public_key = os.getenv('LANGFUSE_PUBLIC_KEY') self.secret_key = os.getenv('LANGFUSE_SECRET_KEY') self.host = os.getenv('LANGFUSE_HOST', 'https://cloud.langfuse.com') if not self.public_key or not self.secret_key: raise ValueError("Missing Langfuse keys in .env file") self.client = Langfuse( public_key=self.public_key, secret_key=self.secret_key, host=self.host ) def extract_transcription_from_input(self, input_data): """Extract transcription from document input data.""" if isinstance(input_data, str): if "Voici le document:" in input_data: parts = input_data.split("Voici le document:") if len(parts) > 1: return parts[1].strip() elif isinstance(input_data, dict): # Search in messages if it's a dict with messages if 'messages' in input_data: for message in input_data['messages']: if isinstance(message, dict) and message.get('role') == 'user': content = message.get('content', '') if isinstance(content, str) and "Voici le document:" in content: parts = content.split("Voici le document:") if len(parts) > 1: return parts[1].strip() # Search in other dict keys for key, value in input_data.items(): if isinstance(value, str) and "Voici le document:" in value: parts = value.split("Voici le document:") if len(parts) > 1: return parts[1].strip() elif isinstance(input_data, list): for message in input_data: if isinstance(message, dict): content = message.get('content', '') if isinstance(content, str) and "Voici le document:" in content: parts = content.split("Voici le document:") if len(parts) > 1: return parts[1].strip() return None def get_traces_with_transcriptions(self, limit=50, days_back=7): """Retrieve traces containing medical transcriptions.""" print(f"šŸ” Searching for transcriptions in the last {limit} traces...") try: # Retrieve traces traces = self.client.get_traces(limit=limit) print(f"āœ… {len(traces.data)} traces retrieved") transcriptions = [] for i, trace in enumerate(traces.data): print( f"šŸ“‹ Analyzing trace {i+1}/{len(traces.data)}: {trace.id}") try: # Check if trace.input contains a transcription if hasattr(trace, 'input') and trace.input is not None: transcription = self.extract_transcription_from_input( trace.input) if transcription: trans_info = { 'trace_id': trace.id, 'trace_name': trace.name, 'user_id': trace.user_id, 'trace_timestamp': trace.timestamp.isoformat() if trace.timestamp else None, 'transcription': transcription, 'extracted_at': datetime.now().isoformat() } transcriptions.append(trans_info) print(f" āœ… Transcription found and extracted!") else: print(f" āŒ No transcription found in trace.input") else: print(f" āš ļø No input available for this trace") except Exception as e: print(f" āš ļø Error analyzing trace {trace.id}: {e}") continue # Delay between requests to avoid rate limiting if i < len(traces.data) - 1: # Don't wait after the last trace time.sleep(1) # Wait 1 second between each trace print(f"\nšŸ“Š Summary: {len(transcriptions)} transcriptions found") return transcriptions except Exception as e: print(f"āŒ Error retrieving traces: {e}") return [] def save_transcriptions(self, transcriptions, filename=None): """Save transcriptions to a JSON file.""" if not filename: timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"medical_transcriptions_{timestamp}.json" try: # Concatenate all transcriptions into a single string transcription_texts = [trans['transcription'] for trans in transcriptions] concatenated_transcription = "\n\n".join(transcription_texts) # Save as an object with transcription as a single string data_to_save = { "extracted_at": datetime.now().isoformat(), "total_transcriptions": len(transcriptions), "transcription": concatenated_transcription } with open(filename, 'w', encoding='utf-8') as f: json.dump(data_to_save, f, ensure_ascii=False, indent=2) print(f"šŸ’¾ Transcriptions saved to {filename}") return filename except Exception as e: print(f"āŒ Error during save: {e}") return None def save_transcriptions_by_user(self, transcriptions): """Save transcriptions by user in separate files.""" if not transcriptions: print("šŸ“­ No transcriptions to save") return # Create transcriptions directory if it doesn't exist transcriptions_dir = "transcriptions" if not os.path.exists(transcriptions_dir): os.makedirs(transcriptions_dir) print(f"šŸ“ Directory '{transcriptions_dir}' created") # Group transcriptions by user_id user_transcriptions = {} for trans in transcriptions: user_id = trans.get('user_id', 'unknown') if user_id not in user_transcriptions: user_transcriptions[user_id] = [] user_transcriptions[user_id].append(trans) # Save one file per user (only if user_id contains .rtf) saved_files = [] for user_id, user_trans in user_transcriptions.items(): # Check if user_id contains .rtf if '.rtf' not in user_id: print(f"ā­ļø Skipped {user_id} (no .rtf)") continue timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"transcriptions_{user_id}_{timestamp}.json" filepath = os.path.join(transcriptions_dir, filename) try: # Concatenate all transcriptions into a single string transcription_texts = [trans['transcription'] for trans in user_trans] concatenated_transcription = "\n\n".join(transcription_texts) # Save as an object with transcription as a single string data_to_save = { "user_id": user_id, "extracted_at": datetime.now().isoformat(), "total_transcriptions": len(user_trans), "transcription": concatenated_transcription } with open(filepath, 'w', encoding='utf-8') as f: json.dump(data_to_save, f, ensure_ascii=False, indent=2) saved_files.append(filepath) print(f"šŸ’¾ Saved transcriptions for {user_id}: {filename}") except Exception as e: print(f"āŒ Error saving transcriptions for {user_id}: {e}") print(f"\nšŸ“Š Summary: {len(saved_files)} files saved") return saved_files def display_transcriptions_summary(self, transcriptions): """Display a summary of retrieved transcriptions.""" if not transcriptions: print("šŸ“­ No transcriptions to display") return print("\nšŸ“Š TRANSCRIPTIONS SUMMARY") print("=" * 50) print(f"Total transcriptions: {len(transcriptions)}") # Group by user user_counts = {} for trans in transcriptions: user_id = trans.get('user_id', 'unknown') user_counts[user_id] = user_counts.get(user_id, 0) + 1 print(f"Unique users: {len(user_counts)}") for user_id, count in user_counts.items(): print(f" - {user_id}: {count} transcriptions") def run(self, limit=50, save_to_file=True, save_by_user=True): """Run the complete transcription retrieval process.""" print("šŸš€ Starting medical transcription retrieval...") print("=" * 60) # Retrieve transcriptions transcriptions = self.get_traces_with_transcriptions(limit=limit) if not transcriptions: print("āŒ No transcriptions found") return None # Display summary self.display_transcriptions_summary(transcriptions) # Save transcriptions saved_files = [] if save_to_file: saved_file = self.save_transcriptions(transcriptions) if saved_file: saved_files.append(saved_file) if save_by_user: user_files = self.save_transcriptions_by_user(transcriptions) saved_files.extend(user_files) print(f"\nāœ… Retrieval completed! {len(saved_files)} files saved") return saved_files def main(): """Main function to run the transcription retriever.""" print("šŸ„ Medical Transcription Retriever") print("=" * 40) try: retriever = MedicalTranscriptionRetriever() saved_files = retriever.run( limit=50, save_to_file=True, save_by_user=True) if saved_files: print(f"\nšŸŽ‰ Success! Files saved: {len(saved_files)}") else: print("\nāŒ No files were saved") except Exception as e: print(f"āŒ Error: {e}") import traceback traceback.print_exc() if __name__ == "__main__": main()