Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,12 +8,14 @@ from PIL import Image
|
|
| 8 |
from diffusers import FluxKontextPipeline
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
|
|
|
|
|
|
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
|
| 13 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 14 |
|
| 15 |
@spaces.GPU
|
| 16 |
-
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=
|
| 17 |
"""
|
| 18 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 19 |
|
|
@@ -22,36 +24,20 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 22 |
for contextual image editing tasks.
|
| 23 |
|
| 24 |
Args:
|
| 25 |
-
input_image (PIL.Image.Image): The input image to be edited.
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
using the provided seed value. Defaults to False.
|
| 33 |
-
guidance_scale (float, optional): Controls how closely the model follows the
|
| 34 |
-
prompt. Higher values mean stronger adherence to the prompt but may reduce
|
| 35 |
-
image quality. Range: 1.0-10.0. Defaults to 2.5.
|
| 36 |
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 37 |
-
Range: 1-30. Defaults to
|
| 38 |
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 39 |
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 40 |
|
| 41 |
Returns:
|
| 42 |
-
|
| 43 |
-
- PIL.Image.Image: The generated/edited image
|
| 44 |
-
- int: The seed value used for generation (useful when randomize_seed=True)
|
| 45 |
-
- gr.update: Gradio update object to make the reuse button visible
|
| 46 |
-
|
| 47 |
-
Example:
|
| 48 |
-
>>> edited_image, used_seed, button_update = infer(
|
| 49 |
-
... input_image=my_image,
|
| 50 |
-
... prompt="Add sunglasses",
|
| 51 |
-
... seed=123,
|
| 52 |
-
... randomize_seed=False,
|
| 53 |
-
... guidance_scale=2.5
|
| 54 |
-
... )
|
| 55 |
"""
|
| 56 |
if randomize_seed:
|
| 57 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -62,6 +48,8 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 62 |
image=input_image,
|
| 63 |
prompt=prompt,
|
| 64 |
guidance_scale=guidance_scale,
|
|
|
|
|
|
|
| 65 |
num_inference_steps=steps,
|
| 66 |
generator=torch.Generator().manual_seed(seed),
|
| 67 |
).images[0]
|
|
@@ -72,7 +60,12 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 72 |
num_inference_steps=steps,
|
| 73 |
generator=torch.Generator().manual_seed(seed),
|
| 74 |
).images[0]
|
| 75 |
-
return image, seed, gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
css="""
|
| 78 |
#col-container {
|
|
@@ -85,7 +78,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 85 |
|
| 86 |
with gr.Column(elem_id="col-container"):
|
| 87 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 88 |
-
Image editing and manipulation model.
|
| 89 |
""")
|
| 90 |
with gr.Row():
|
| 91 |
with gr.Column():
|
|
@@ -123,7 +116,7 @@ Image editing and manipulation model.
|
|
| 123 |
label="Steps",
|
| 124 |
minimum=1,
|
| 125 |
maximum=30,
|
| 126 |
-
value=
|
| 127 |
step=1
|
| 128 |
)
|
| 129 |
|
|
@@ -131,17 +124,30 @@ Image editing and manipulation model.
|
|
| 131 |
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 132 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
gr.on(
|
| 136 |
triggers=[run_button.click, prompt.submit],
|
| 137 |
fn = infer,
|
| 138 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 139 |
outputs = [result, seed, reuse_button]
|
| 140 |
)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
| 146 |
|
| 147 |
demo.launch(mcp_server=True)
|
|
|
|
| 8 |
from diffusers import FluxKontextPipeline
|
| 9 |
from diffusers.utils import load_image
|
| 10 |
|
| 11 |
+
# down to 22 steps to try and keep this ~<30 seconds so it will generally work in claude.ai - which doesn't reset timeout with notifications.
|
| 12 |
+
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
|
| 15 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 16 |
|
| 17 |
@spaces.GPU
|
| 18 |
+
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=20, progress=gr.Progress(track_tqdm=True)):
|
| 19 |
"""
|
| 20 |
Perform image editing using the FLUX.1 Kontext pipeline.
|
| 21 |
|
|
|
|
| 24 |
for contextual image editing tasks.
|
| 25 |
|
| 26 |
Args:
|
| 27 |
+
input_image (PIL.Image.Image): The path to the input image to be edited.
|
| 28 |
+
prompt (str): Text description of the desired edit to apply to the image. Examples: "Remove glasses", "Add a hat", "Change background to beach".
|
| 29 |
+
seed (int, optional): Random seed for reproducible generation.
|
| 30 |
+
Must be between 0 and MAX_SEED (2^31 - 1). Defaults to 42.
|
| 31 |
+
randomize_seed (bool, optional): If True, generates a random seed instead of using the provided seed value.
|
| 32 |
+
Defaults to False.
|
| 33 |
+
guidance_scale (float, optional): Controls how closely the model follows the prompt. Higher values mean stronger adherence to the prompt but may reduce image quality. Range: 1.0-10.0. Defaults to 2.5.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
steps (int, optional): Controls how many steps to run the diffusion model for.
|
| 35 |
+
Range: 1-30. Defaults to 20.
|
| 36 |
progress (gr.Progress, optional): Gradio progress tracker for monitoring
|
| 37 |
generation progress. Defaults to gr.Progress(track_tqdm=True).
|
| 38 |
|
| 39 |
Returns:
|
| 40 |
+
The modified image and seed used for generation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
"""
|
| 42 |
if randomize_seed:
|
| 43 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 48 |
image=input_image,
|
| 49 |
prompt=prompt,
|
| 50 |
guidance_scale=guidance_scale,
|
| 51 |
+
width = input_image.size[0],
|
| 52 |
+
height = input_image.size[1],
|
| 53 |
num_inference_steps=steps,
|
| 54 |
generator=torch.Generator().manual_seed(seed),
|
| 55 |
).images[0]
|
|
|
|
| 60 |
num_inference_steps=steps,
|
| 61 |
generator=torch.Generator().manual_seed(seed),
|
| 62 |
).images[0]
|
| 63 |
+
return image, seed, gr.Button(visible=True)
|
| 64 |
+
|
| 65 |
+
@spaces.GPU(duration=25)
|
| 66 |
+
def infer_example(input_image, prompt):
|
| 67 |
+
image, seed, _ = infer(input_image, prompt)
|
| 68 |
+
return image, seed
|
| 69 |
|
| 70 |
css="""
|
| 71 |
#col-container {
|
|
|
|
| 78 |
|
| 79 |
with gr.Column(elem_id="col-container"):
|
| 80 |
gr.Markdown(f"""# FLUX.1 Kontext [dev]
|
| 81 |
+
Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro], [[blog]](https://bfl.ai/announcements/flux-1-kontext-dev) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev)
|
| 82 |
""")
|
| 83 |
with gr.Row():
|
| 84 |
with gr.Column():
|
|
|
|
| 116 |
label="Steps",
|
| 117 |
minimum=1,
|
| 118 |
maximum=30,
|
| 119 |
+
value=20,
|
| 120 |
step=1
|
| 121 |
)
|
| 122 |
|
|
|
|
| 124 |
result = gr.Image(label="Result", show_label=False, interactive=False)
|
| 125 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 126 |
|
| 127 |
+
|
| 128 |
+
examples = gr.Examples(
|
| 129 |
+
examples=[
|
| 130 |
+
["flowers.png", "turn the flowers into sunflowers"],
|
| 131 |
+
["monster.png", "make this monster ride a skateboard on the beach"],
|
| 132 |
+
["cat.png", "make this cat happy"]
|
| 133 |
+
],
|
| 134 |
+
inputs=[input_image, prompt],
|
| 135 |
+
outputs=[result, seed],
|
| 136 |
+
fn=infer_example,
|
| 137 |
+
cache_examples="lazy"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
gr.on(
|
| 141 |
triggers=[run_button.click, prompt.submit],
|
| 142 |
fn = infer,
|
| 143 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 144 |
outputs = [result, seed, reuse_button]
|
| 145 |
)
|
| 146 |
+
|
| 147 |
+
# reuse_button.click(
|
| 148 |
+
# fn = lambda image: image,
|
| 149 |
+
# inputs = [result],
|
| 150 |
+
# outputs = [input_image]
|
| 151 |
+
# )
|
| 152 |
|
| 153 |
demo.launch(mcp_server=True)
|