File size: 41,440 Bytes
c21f7f2 fa2c20f de19c07 c21f7f2 1defa39 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f c21f7f2 fa2c20f c21f7f2 fa2c20f 99c7d69 fa2c20f acd1110 fa2c20f acd1110 fa2c20f 868114c fa2c20f 868114c fa2c20f c21f7f2 fa2c20f 99c7d69 fa2c20f c21f7f2 fa2c20f 99c7d69 fa2c20f c21f7f2 fa2c20f 99c7d69 fa2c20f 868114c fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 26ebf77 fa2c20f 99c7d69 fa2c20f 99c7d69 fa2c20f 99c7d69 fa2c20f acd1110 fa2c20f acd1110 868114c fa2c20f acd1110 868114c fa2c20f acd1110 fa2c20f 868114c fa2c20f c21f7f2 fa2c20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
# ============================================================
# SD_roster_real - Fixed Team Production Planning (Option A)
# - Uses config-style variable names from src/config/optimization_config.py
# - Team per product (simultaneous): UNICEF Fixed term / Humanizer
# - Line types via numeric ids: 6=long, 7=short
# - One product per (line, shift, day)
# - Weekly demand (across DATE_SPAN)
# ============================================================
from ortools.linear_solver import pywraplp
from math import ceil
import datetime
from src.config.constants import ShiftType, LineType, KitLevel
# ---- config import ----
# Import constants and other modules directly
from src.config.constants import ShiftType, LineType, DefaultConfig
import src.preprocess.extract as extract
from src.preprocess.hierarchy_parser import sort_products_by_hierarchy
class Optimizer:
"""Workforce optimization class that handles all configuration and optimization logic"""
def __init__(self):
"""Initialize optimizer with session state configuration"""
self.load_session_state_config()
self.load_data()
def load_session_state_config(self):
"""Load all configuration from session state"""
import streamlit as st
import datetime as dt
# Date configuration
self.start_date = st.session_state.start_date
self.planning_days = st.session_state.planning_days
self.start_datetime = dt.datetime.combine(self.start_date, dt.datetime.min.time())
self.end_date = self.start_datetime + dt.timedelta(days=self.planning_days - 1)
self.date_span = list(range(1, self.planning_days + 1))
# Employee and shift configuration
self.employee_type_list = list(st.session_state.selected_employee_types)
self.active_shift_list = sorted(list(st.session_state.selected_shifts))
print("\n[DEBUG] From session_state.selected_employee_types:")
for emp in self.employee_type_list:
print(f" - '{emp}' (len={len(emp)}, repr={repr(emp)})")
# Working hours configuration
self.max_hour_per_person_per_day = st.session_state.max_hour_per_person_per_day
self.max_hours_shift = {
ShiftType.REGULAR: st.session_state.max_hours_shift_1,
ShiftType.EVENING: st.session_state.max_hours_shift_2,
ShiftType.OVERTIME: st.session_state.max_hours_shift_3
}
# Workforce limits
self.max_employee_per_type_on_day = st.session_state.max_employee_per_type_on_day
# Operations configuration
self.line_counts = st.session_state.line_counts
self.max_parallel_workers = {
LineType.LONG_LINE: st.session_state.max_parallel_workers_long_line,
LineType.MINI_LOAD: st.session_state.max_parallel_workers_mini_load
}
# Cost configuration
self.cost_list_per_emp_shift = st.session_state.cost_list_per_emp_shift
# Payment mode configuration
self.payment_mode_config = st.session_state.payment_mode_config
# Fixed staffing requirements
self.fixed_min_unicef_per_day = st.session_state.fixed_min_unicef_per_day
print("✅ Session state configuration loaded successfully")
def load_data(self):
"""Load all required data from files"""
# Load hierarchy data
try:
kit_levels, dependencies, priority_order = extract.get_production_order_data()
self.kit_levels = kit_levels
self.kit_dependencies = dependencies
self.production_priority_order = priority_order
except:
self.kit_levels = {}
self.kit_dependencies = {}
self.production_priority_order = []
# Load kit line match data
try:
kit_line_match = extract.read_kit_line_match_data()
kit_line_match_dict = kit_line_match.set_index("kit_name")["line_type"].to_dict()
# Create line name to ID mapping
line_name_to_id = {
"long line": LineType.LONG_LINE,
"mini load": LineType.MINI_LOAD
}
# Convert line names to IDs
self.kit_line_match_dict = {}
for kit_name, line_name in kit_line_match_dict.items():
self.kit_line_match_dict[kit_name] = line_name_to_id.get(line_name.lower(), line_name)
except:
self.kit_line_match_dict = {}
# Load product and demand data
try:
from src.demand_filtering import DemandFilter
filter_instance = DemandFilter()
filter_instance.load_data(force_reload=True)
self.product_list = filter_instance.get_filtered_product_list()
self.demand_dictionary = filter_instance.get_filtered_demand_dictionary()
except:
self.product_list = []
self.demand_dictionary = {}
# Load team requirements
try:
print("\n[DEBUG] Loading team requirements from Kits Calculation...")
kits_df = extract.read_personnel_requirement_data()
print(f"[DEBUG] Loaded kits_df with {len(kits_df)} rows")
print(f"[DEBUG] Columns: {list(kits_df.columns)}")
# Initialize team requirements dictionary
self.team_req_per_product = {
"UNICEF Fixed term": {},
"Humanizer": {}
}
# Process each product in the product list
for product in self.product_list:
product_data = kits_df[kits_df['Kit'] == product]
if not product_data.empty:
# Extract Humanizer and UNICEF staff requirements
humanizer_req = product_data["Humanizer"].iloc[0]
unicef_req = product_data["UNICEF staff"].iloc[0]
# Convert to int (data is already cleaned in extract function)
self.team_req_per_product["Humanizer"][product] = int(humanizer_req)
self.team_req_per_product["UNICEF Fixed term"][product] = int(unicef_req)
else:
print(f"[WARN] Product {product} not found in Kits Calculation, setting requirements to 0")
self.team_req_per_product["Humanizer"][product] = 0
self.team_req_per_product["UNICEF Fixed term"][product] = 0
print(f"\n[DEBUG] team_req_per_product keys after loading:")
for key in self.team_req_per_product.keys():
product_count = len(self.team_req_per_product[key])
print(f" - '{key}' (len={len(key)}, {product_count} products)")
except Exception as e:
print(f"[ERROR] Failed to load team requirements: {e}")
import traceback
traceback.print_exc()
self.team_req_per_product = {}
# Load product speed data
try:
self.per_product_speed = extract.read_package_speed_data()
except:
self.per_product_speed = {}
print("✅ All data loaded successfully")
def build_lines(self):
"""Build line instances from session state configuration"""
line_tuples = []
try:
import streamlit as st
# Get selected line types from Data Selection tab
selected_lines = st.session_state.selected_lines
# Get line counts from Operations tab
line_counts = st.session_state.line_counts
print(f"Using lines from session state - selected: {selected_lines}, counts: {line_counts}")
for line_type in selected_lines:
count = line_counts.get(line_type, 0)
for i in range(1, count + 1):
line_tuples.append((line_type, i))
return line_tuples
except Exception as e:
print(f"Could not get line config from session state: {e}")
# Fallback: Use default values
print("Falling back to default line configuration")
default_selected_lines = [LineType.LONG_LINE, LineType.MINI_LOAD]
default_line_counts = {
LineType.LONG_LINE: DefaultConfig.LINE_COUNT_LONG_LINE,
LineType.MINI_LOAD: DefaultConfig.LINE_COUNT_MINI_LOAD
}
for line_type in default_selected_lines:
count = default_line_counts.get(line_type, 0)
for i in range(1, count + 1):
line_tuples.append((line_type, i))
return line_tuples
def run_optimization(self):
"""Run the main optimization algorithm"""
# *** CRITICAL: Load fresh data to reflect current Streamlit configs ***
print("\n" + "="*60)
print("🔄 LOADING FRESH DATA FOR OPTIMIZATION")
print("="*60)
print(f"📦 LOADED PRODUCTS: {len(self.product_list)} products")
print(f"📈 LOADED DEMAND: {sum(self.demand_dictionary.values())} total units")
print(f"👥 LOADED TEAM REQUIREMENTS: {len(self.team_req_per_product)} employee types")
# Debug: Print team requirements keys
print("\n[DEBUG] team_req_per_product employee types:")
for emp_type in self.team_req_per_product.keys():
print(f" - '{emp_type}'")
print("\n[DEBUG] self.employee_type_list:")
for emp_type in self.employee_type_list:
print(f" - '{emp_type}'")
# Build ACTIVE schedule for fresh product list
ACTIVE = {t: {p: 1 for p in self.product_list} for t in self.date_span}
# --- Sets ---
date_span_list = list(self.date_span)
employee_type_list = self.employee_type_list
active_shift_list = self.active_shift_list
print(f"\n[DEBUG] employee_type_list: {employee_type_list}")
print(f"[DEBUG] active_shift_list: {active_shift_list}")
# *** HIERARCHY SORTING: Sort products by production priority ***
print("\n" + "="*60)
print("🔗 APPLYING HIERARCHY-BASED PRODUCTION ORDERING")
print("="*60)
sorted_product_list = sort_products_by_hierarchy(list(self.product_list), self.kit_levels, self.kit_dependencies)
line_tuples = self.build_lines()
print("Lines", line_tuples)
print("PER_PRODUCT_SPEED", self.per_product_speed)
# --- Short aliases for parameters ---
print("\n[DEBUG] Creating variable aliases...")
Hmax_s = dict(self.max_hours_shift) # per-shift hours
Hmax_daily = self.max_hour_per_person_per_day
max_workers_line = dict(self.max_parallel_workers) # per line type
max_employee_type_day = self.max_employee_per_type_on_day # {emp_type:{t:headcount}}
cost = self.cost_list_per_emp_shift # {emp_type:{shift:cost}}
# Create aliases for data dictionaries
TEAM_REQ_PER_PRODUCT = self.team_req_per_product
DEMAND_DICTIONARY = self.demand_dictionary
KIT_LINE_MATCH_DICT = self.kit_line_match_dict
KIT_LEVELS = self.kit_levels
KIT_DEPENDENCIES = self.kit_dependencies
PER_PRODUCT_SPEED = self.per_product_speed
FIXED_MIN_UNICEF_PER_DAY = self.fixed_min_unicef_per_day
PAYMENT_MODE_CONFIG = self.payment_mode_config
# Mock missing config variables (if they exist in config, they'll be overridden)
EVENING_SHIFT_MODE = "normal"
EVENING_SHIFT_DEMAND_THRESHOLD = 0.9
print(f"[DEBUG] TEAM_REQ_PER_PRODUCT has {len(TEAM_REQ_PER_PRODUCT)} employee types")
print(f"[DEBUG] employee_type_list has {len(employee_type_list)} types")
# --- Feasibility quick checks ---
print("\n[DEBUG] Starting feasibility checks...")
# 1) If team size is greater than max_workers_line, block the product-line type combination
for i, p in enumerate(sorted_product_list):
print(f"[DEBUG] Checking product {i+1}/{len(sorted_product_list)}: {p}")
# Check if all employee types exist in TEAM_REQ_PER_PRODUCT
for e in employee_type_list:
if e not in TEAM_REQ_PER_PRODUCT:
print(f"[ERROR] Employee type '{e}' not found in TEAM_REQ_PER_PRODUCT!")
print(f"[ERROR] Available keys: {list(TEAM_REQ_PER_PRODUCT.keys())}")
raise KeyError(f"Employee type '{e}' not in team requirements data")
if p not in TEAM_REQ_PER_PRODUCT[e]:
print(f"[ERROR] Product '{p}' not found in TEAM_REQ_PER_PRODUCT['{e}']!")
raise KeyError(f"Product '{p}' not in team requirements for employee type '{e}'")
req_total = sum(TEAM_REQ_PER_PRODUCT[e][p] for e in employee_type_list)
print(f"[DEBUG] req_total: {req_total}")
lt = KIT_LINE_MATCH_DICT.get(p, 6) # Default to long line (6) if not found
if p not in KIT_LINE_MATCH_DICT:
print(f"[WARN] Product {p}: No line type mapping found, defaulting to long line (6)")
if req_total > max_workers_line.get(lt, 1e9):
print(f"[WARN] Product {p}: team size {req_total} > MAX_PARALLEL_WORKERS[{lt}] "
f"= {max_workers_line.get(lt)}. Blocked.")
# 2) Check if demand can be met without evening shift (only if in normal mode)
if EVENING_SHIFT_MODE == "normal":
total_demand = sum(DEMAND_DICTIONARY.get(p, 0) for p in sorted_product_list)
# Calculate maximum capacity with regular + overtime shifts only
regular_overtime_shifts = [s for s in active_shift_list if s in ShiftType.REGULAR_AND_OVERTIME]
max_capacity = 0
for p in sorted_product_list:
if p in PER_PRODUCT_SPEED:
product_speed = PER_PRODUCT_SPEED[p] # units per hour
# Calculate max hours available for this product across all lines and shifts
max_hours_per_product = 0
for ell in line_tuples:
for s in regular_overtime_shifts:
for t in date_span_list:
max_hours_per_product += Hmax_s[s]
max_capacity += product_speed * max_hours_per_product
capacity_ratio = max_capacity / total_demand if total_demand > 0 else float('inf')
print(f"[CAPACITY CHECK] Total demand: {total_demand}")
print(f"[CAPACITY CHECK] Max capacity (Regular + Overtime): {max_capacity:.1f}")
print(f"[CAPACITY CHECK] Capacity ratio: {capacity_ratio:.2f}")
if capacity_ratio < EVENING_SHIFT_DEMAND_THRESHOLD:
print(f"\n🚨 [ALERT] DEMAND TOO HIGH!")
print(f" Current capacity can only meet {capacity_ratio*100:.1f}% of demand")
print(f" Threshold: {EVENING_SHIFT_DEMAND_THRESHOLD*100:.1f}%")
print(f" RECOMMENDATION: Change EVENING_SHIFT_MODE to 'activate_evening' to enable evening shift")
print(f" This will add shift 3 to increase capacity\n")
# --- Solver ---
solver = pywraplp.Solver.CreateSolver('CBC')
if not solver:
raise RuntimeError("CBC solver not found.")
INF = solver.infinity()
# --- Variables ---
# Assignment[p,ell,s,t] ∈ {0,1}: 1 if product p runs on (line,shift,day)
Assignment, Hours, Units = {}, {}, {} # Hours: run hours, Units: production units
for p in sorted_product_list:
for ell in line_tuples: # ell = (line_type_id, idx)
for s in active_shift_list:
for t in date_span_list:
#Is product p assigned to run on line ell, during shift s, on day t?
Assignment[p, ell, s, t] = solver.BoolVar(f"Z_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
#How many hours does product p run on line ell, during shift s, on day t?
Hours[p, ell, s, t] = solver.NumVar(0, Hmax_s[s], f"T_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
#How many units does product p run on line ell, during shift s, on day t?
Units[p, ell, s, t] = solver.NumVar(0, INF, f"U_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
# Note: IDLE variables removed - we only track employees actually working on production
# Variable to track actual number of employees of each type working each shift each day
# This represents how many distinct employees of type e are working in shift s on day t
EMPLOYEE_COUNT = {}
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
# Note: Minimum staffing is per day, not per shift
# We'll handle the daily minimum constraint separately
max_count = max_employee_type_day.get(e, {}).get(t, 100)
EMPLOYEE_COUNT[e, s, t] = solver.IntVar(
0, # No minimum per shift (daily minimum handled separately)
max_count,
f"EmpCount_{e}_s{s}_day{t}"
)
# Track total person-hours worked by each employee type per shift per day
# This is needed for employee-centric wage calculation
EMPLOYEE_HOURS = {}
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
# Sum of all work hours for employee type e in shift s on day t
# This represents total person-hours (e.g., 5 employees × 8 hours = 40 person-hours)
EMPLOYEE_HOURS[e, s, t] = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t]
for p in sorted_product_list
for ell in line_tuples
)
# Note: Binary variables for bulk payment are now created inline in the cost calculation
# --- Objective: Minimize total labor cost (wages) ---
# Employee-centric approach: calculate wages based on actual employees and their hours
print(f"\n[DEBUG] Payment mode configuration: {PAYMENT_MODE_CONFIG}")
# Build cost terms based on payment mode
cost_terms = []
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
payment_mode = PAYMENT_MODE_CONFIG.get(s, "partial") # Default to partial if not specified
if payment_mode == "partial":
# Partial payment: pay for actual person-hours worked
# Cost = hourly_rate × total_person_hours
# Example: $20/hr × 40 person-hours = $800
cost_terms.append(cost[e][s] * EMPLOYEE_HOURS[e, s, t])
elif payment_mode == "bulk":
# Bulk payment: if ANY work happens in shift, pay ALL working employees for FULL shift
# We need to know: did employee type e work at all in shift s on day t?
# Create binary: 1 if employee type e worked in this shift
work_in_shift = solver.BoolVar(f"work_{e}_s{s}_d{t}")
# Link binary to work hours
# If EMPLOYEE_HOURS > 0, then work_in_shift = 1
# If EMPLOYEE_HOURS = 0, then work_in_shift = 0
max_possible_hours = Hmax_s[s] * max_employee_type_day[e][t]
solver.Add(EMPLOYEE_HOURS[e, s, t] <= max_possible_hours * work_in_shift)
solver.Add(work_in_shift * 0.001 <= EMPLOYEE_HOURS[e, s, t])
# Calculate number of employees working in this shift
# This is approximately: ceil(EMPLOYEE_HOURS / Hmax_s[s])
# But we can use: employees_working_in_shift
# For simplicity, use EMPLOYEE_HOURS / Hmax_s[s] as continuous approximation
# Or better: create a variable for employees per shift
# Simpler approach: For bulk payment, assume if work happens,
# we need approximately EMPLOYEE_HOURS/Hmax_s[s] employees,
# and each gets paid for full shift
# Cost ≈ (EMPLOYEE_HOURS / Hmax_s[s]) × Hmax_s[s] × hourly_rate = EMPLOYEE_HOURS × hourly_rate
# But that's the same as partial! The difference is we round up employees.
# Better approach: Create variable for employees working in this specific shift
employees_in_shift = solver.IntVar(0, max_employee_type_day[e][t], f"emp_{e}_s{s}_d{t}")
# Link employees_in_shift to work requirements
# If EMPLOYEE_HOURS requires N employees, then employees_in_shift >= ceil(N)
solver.Add(employees_in_shift * Hmax_s[s] >= EMPLOYEE_HOURS[e, s, t])
# Cost: pay each employee for full shift
cost_terms.append(cost[e][s] * Hmax_s[s] * employees_in_shift)
# Note: No idle employee costs - only pay for employees actually working
total_cost = solver.Sum(cost_terms)
# Objective: minimize total labor cost (wages)
# This finds the optimal production schedule (product order, line assignment, timing)
# that minimizes total wages while meeting all demand and capacity constraints
solver.Minimize(total_cost)
# --- Constraints ---
# 1) Weekly demand - must meet exactly (no over/under production)
for p in sorted_product_list:
total_production = solver.Sum(Units[p, ell, s, t] for ell in line_tuples for s in active_shift_list for t in date_span_list)
demand = DEMAND_DICTIONARY.get(p, 0)
# Must produce at least the demand
solver.Add(total_production >= demand)
# Must not produce more than the demand (prevent overproduction)
solver.Add(total_production <= demand)
# 2) One product per (line,shift,day) + time gating
for ell in line_tuples:
for s in active_shift_list:
for t in date_span_list:
solver.Add(solver.Sum(Assignment[p, ell, s, t] for p in sorted_product_list) <= 1)
for p in sorted_product_list:
solver.Add(Hours[p, ell, s, t] <= Hmax_s[s] * Assignment[p, ell, s, t])
# 3) Product-line type compatibility + (optional) activity by day
for p in sorted_product_list:
req_lt = KIT_LINE_MATCH_DICT.get(p, LineType.LONG_LINE) # Default to long line if not found
req_total = sum(TEAM_REQ_PER_PRODUCT[e][p] for e in employee_type_list)
for ell in line_tuples:
allowed = (ell[0] == req_lt) and (req_total <= max_workers_line.get(ell[0], 1e9))
for s in active_shift_list:
for t in date_span_list:
if ACTIVE[t][p] == 0 or not allowed:
solver.Add(Assignment[p, ell, s, t] == 0)
solver.Add(Hours[p, ell, s, t] == 0)
solver.Add(Units[p, ell, s, t] == 0)
# 4) Line throughput: Units ≤ product_speed * Hours
for p in sorted_product_list:
for ell in line_tuples:
for s in active_shift_list:
for t in date_span_list:
# Get product speed (same speed regardless of line type)
if p in PER_PRODUCT_SPEED:
# Convert kit per day to kit per hour (assuming 7.5 hour workday)
speed = PER_PRODUCT_SPEED[p]
# Upper bound: units cannot exceed capacity
solver.Add(
Units[p, ell, s, t] <= speed * Hours[p, ell, s, t]
)
# Lower bound: if working, must produce (prevent phantom work)
solver.Add(
Units[p, ell, s, t] >= speed * Hours[p, ell, s, t]
)
else:
# Default speed if not found
default_speed = 800 / 7.5 # units per hour
print(f"Warning: No speed data for product {p}, using default {default_speed:.1f} per hour")
# Upper bound: units cannot exceed capacity
solver.Add(
Units[p, ell, s, t] <= default_speed * Hours[p, ell, s, t]
)
# Lower bound: if working, must produce (prevent phantom work)
solver.Add(
Units[p, ell, s, t] >= default_speed * Hours[p, ell, s, t]
)
# Working hours constraint: active employees cannot exceed shift hour capacity
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
# No idle employee constraints - employees are only counted when working
solver.Add(
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t] for p in sorted_product_list for ell in line_tuples)
<= Hmax_s[s] * max_employee_type_day[e][t]
)
# 6) Per-shift staffing capacity by type: link employee count to actual work hours
# This constraint ensures EMPLOYEE_COUNT[e,s,t] represents the actual number of employees needed in each shift
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
# Total person-hours worked by employee type e in shift s on day t
total_person_hours_in_shift = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t]
for p in sorted_product_list
for ell in line_tuples
)
# Employee count must be sufficient to cover the work in this shift
# If employees work H person-hours total and each can work max M hours/shift,
# then we need at least ceil(H/M) employees
# Constraint: employee_count × max_hours_per_shift >= total_person_hours_in_shift
solver.Add(EMPLOYEE_COUNT[e, s, t] * Hmax_s[s] >= total_person_hours_in_shift)
# 7) Shift ordering constraints (only apply if shifts are available)
# Evening shift after regular shift
if ShiftType.EVENING in active_shift_list and ShiftType.REGULAR in active_shift_list: # Only if both shifts are available
for e in employee_type_list:
for t in date_span_list:
solver.Add(
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, ShiftType.EVENING, t] for p in sorted_product_list for ell in line_tuples)
<=
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, ShiftType.REGULAR, t] for p in sorted_product_list for ell in line_tuples)
)
# Overtime should only be used when regular shift is at capacity
if ShiftType.OVERTIME in active_shift_list and ShiftType.REGULAR in active_shift_list: # Only if both shifts are available
print("\n[OVERTIME] Adding constraints to ensure overtime only when regular shift is insufficient...")
for e in employee_type_list:
for t in date_span_list:
# Get available regular capacity for this employee type and day
regular_capacity = max_employee_type_day[e][t]
# Total regular shift usage for this employee type and day
regular_usage = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, ShiftType.REGULAR, t]
for p in sorted_product_list for ell in line_tuples
)
# Total overtime usage for this employee type and day
overtime_usage = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, ShiftType.OVERTIME, t]
for p in sorted_product_list for ell in line_tuples
)
# Create binary variable: 1 if using overtime, 0 otherwise
using_overtime = solver.IntVar(0, 1, f'using_overtime_{e}_{t}')
# If using overtime, regular capacity must be utilized significantly
# Regular usage must be at least 90% of capacity to allow overtime
min_regular_for_overtime = int(0.9 * regular_capacity)
# Constraint 1: Can only use overtime if regular usage is high
solver.Add(regular_usage >= min_regular_for_overtime * using_overtime)
# Constraint 2: If any overtime is used, set the binary variable
solver.Add(overtime_usage <= regular_capacity * using_overtime)
overtime_constraints_added = len(employee_type_list) * len(date_span_list) * 2 # 2 constraints per employee type per day
print(f"[OVERTIME] Added {overtime_constraints_added} constraints ensuring overtime only when regular shifts are at 90%+ capacity")
# 7.5) Bulk payment linking constraints are now handled inline in the cost calculation
# 7.6) *** FIXED MINIMUM UNICEF EMPLOYEES CONSTRAINT ***
# Ensure minimum UNICEF fixed-term staff work in the REGULAR shift every day
# The minimum applies to the regular shift specifically (not overtime or evening)
if 'UNICEF Fixed term' in employee_type_list and FIXED_MIN_UNICEF_PER_DAY > 0:
if ShiftType.REGULAR in active_shift_list:
print(f"\n[FIXED STAFFING] Adding constraint for minimum {FIXED_MIN_UNICEF_PER_DAY} UNICEF employees in REGULAR shift per day...")
for t in date_span_list:
# At least FIXED_MIN_UNICEF_PER_DAY employees must work in the regular shift each day
solver.Add(
EMPLOYEE_COUNT['UNICEF Fixed term', ShiftType.REGULAR, t] >= FIXED_MIN_UNICEF_PER_DAY
)
print(f"[FIXED STAFFING] Added {len(date_span_list)} constraints ensuring >= {FIXED_MIN_UNICEF_PER_DAY} UNICEF employees in regular shift per day")
else:
print(f"\n[FIXED STAFFING] Warning: Regular shift not available, cannot enforce minimum UNICEF staffing")
# 8) *** HIERARCHY DEPENDENCY CONSTRAINTS ***
# For subkits with prepack dependencies: dependencies should be produced before or same time
print("\n[HIERARCHY] Adding dependency constraints...")
dependency_constraints_added = 0
for p in sorted_product_list:
dependencies = KIT_DEPENDENCIES.get(p, [])
if dependencies:
# Get the level of the current product
p_level = KIT_LEVELS.get(p, 2)
for dep in dependencies:
if dep in sorted_product_list: # Only if dependency is also in production list
# Calculate "completion time" for each product (sum of all production times)
p_completion = solver.Sum(
t * Hours[p, ell, s, t] for ell in line_tuples for s in active_shift_list for t in date_span_list
)
dep_completion = solver.Sum(
t * Hours[dep, ell, s, t] for ell in line_tuples for s in active_shift_list for t in date_span_list
)
# Dependency should complete before or at the same time
solver.Add(dep_completion <= p_completion)
dependency_constraints_added += 1
print(f" Added constraint: {dep} (dependency) <= {p} (level {p_level})")
print(f"[HIERARCHY] Added {dependency_constraints_added} dependency constraints")
# --- Solve ---
status = solver.Solve()
if status != pywraplp.Solver.OPTIMAL:
status_names = {pywraplp.Solver.INFEASIBLE: "INFEASIBLE", pywraplp.Solver.UNBOUNDED: "UNBOUNDED"}
print(f"No optimal solution. Status: {status} ({status_names.get(status, 'UNKNOWN')})")
# Debug hint:
# solver.EnableOutput()
# solver.ExportModelAsLpFile("model.lp")
return None
# --- Report ---
result = {}
result['objective'] = solver.Objective().Value()
# Weekly production
prod_week = {p: sum(Units[p, ell, s, t].solution_value() for ell in line_tuples for s in active_shift_list for t in date_span_list) for p in sorted_product_list}
result['weekly_production'] = prod_week
# Which product ran on which line/shift/day
schedule = []
for t in date_span_list:
for ell in line_tuples:
for s in active_shift_list:
chosen = [p for p in sorted_product_list if Assignment[p, ell, s, t].solution_value() > 0.5]
if chosen:
p = chosen[0]
schedule.append({
'day': t,
'line_type_id': ell[0],
'line_idx': ell[1],
'shift': s,
'product': p,
'run_hours': Hours[p, ell, s, t].solution_value(),
'units': Units[p, ell, s, t].solution_value(),
})
result['run_schedule'] = schedule
# Implied headcount by type/shift/day (ceil)
headcount = []
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
used_ph = sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t].solution_value() for p in sorted_product_list for ell in line_tuples)
need = ceil(used_ph / (Hmax_s[s] + 1e-9))
headcount.append({'emp_type': e, 'shift': s, 'day': t,
'needed': need, 'available': max_employee_type_day[e][t]})
result['headcount_per_shift'] = headcount
# Total person-hours by type/day (≤ 14h * headcount)
ph_by_day = []
for e in employee_type_list:
for t in date_span_list:
used = sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t].solution_value() for s in active_shift_list for p in sorted_product_list for ell in line_tuples)
ph_by_day.append({'emp_type': e, 'day': t,
'used_person_hours': used,
'cap_person_hours': Hmax_daily * max_employee_type_day[e][t]})
result['person_hours_by_day'] = ph_by_day
# Actual employee count per type/shift/day (from EMPLOYEE_COUNT variable)
employee_count_by_shift = []
for e in employee_type_list:
for s in active_shift_list:
for t in date_span_list:
count = int(EMPLOYEE_COUNT[e, s, t].solution_value())
used_hours = sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t].solution_value()
for p in sorted_product_list for ell in line_tuples)
avg_hours_per_employee = used_hours / count if count > 0 else 0
if count > 0: # Only add entries where employees are working
employee_count_by_shift.append({
'emp_type': e,
'shift': s,
'day': t,
'employee_count': count,
'total_person_hours': used_hours,
'avg_hours_per_employee': avg_hours_per_employee,
'available': max_employee_type_day[e][t]
})
result['employee_count_by_shift'] = employee_count_by_shift
# Also calculate daily totals (summing across shifts)
employee_count_by_day = []
for e in employee_type_list:
for t in date_span_list:
# Sum employees across all shifts for this day
total_count = sum(int(EMPLOYEE_COUNT[e, s, t].solution_value()) for s in active_shift_list)
used_hours = sum(TEAM_REQ_PER_PRODUCT[e][p] * Hours[p, ell, s, t].solution_value()
for s in active_shift_list for p in sorted_product_list for ell in line_tuples)
avg_hours_per_employee = used_hours / total_count if total_count > 0 else 0
if total_count > 0: # Only add days where employees are working
employee_count_by_day.append({
'emp_type': e,
'day': t,
'employee_count': total_count,
'total_person_hours': used_hours,
'avg_hours_per_employee': avg_hours_per_employee,
'available': max_employee_type_day[e][t]
})
result['employee_count_by_day'] = employee_count_by_day
# Note: Idle employee tracking removed - only counting employees actually working
# Pretty print
print("Objective (min cost):", result['objective'])
print("\n--- Weekly production by product ---")
for p, u in prod_week.items():
print(f"{p}: {u:.1f} / demand {DEMAND_DICTIONARY.get(p,0)}")
print("\n--- Schedule (line, shift, day) ---")
for row in schedule:
shift_name = ShiftType.get_name(row['shift'])
line_name = LineType.get_name(row['line_type_id'])
print(f"date_span_list{row['day']} {line_name}-{row['line_idx']} {shift_name}: "
f"{row['product']} Hours={row['run_hours']:.2f}h Units={row['units']:.1f}")
print("\n--- Implied headcount need (per type/shift/day) ---")
for row in headcount:
shift_name = ShiftType.get_name(row['shift'])
print(f"{row['emp_type']}, {shift_name}, date_span_list{row['day']}: "
f"need={row['needed']} (avail {row['available']})")
print("\n--- Total person-hours by type/day ---")
for row in ph_by_day:
print(f"{row['emp_type']}, date_span_list{row['day']}: used={row['used_person_hours']:.1f} "
f"(cap {row['cap_person_hours']})")
print("\n--- Actual employee count by type/shift/day ---")
for row in employee_count_by_shift:
shift_name = ShiftType.get_name(row['shift'])
print(f"{row['emp_type']}, {shift_name}, date_span_list{row['day']}: "
f"count={row['employee_count']} employees, "
f"total_hours={row['total_person_hours']:.1f}h, "
f"avg={row['avg_hours_per_employee']:.1f}h/employee")
print("\n--- Daily employee totals by type/day (sum across shifts) ---")
for row in employee_count_by_day:
print(f"{row['emp_type']}, date_span_list{row['day']}: "
f"count={row['employee_count']} employees total, "
f"total_hours={row['total_person_hours']:.1f}h, "
f"avg={row['avg_hours_per_employee']:.1f}h/employee "
f"(available: {row['available']})")
# Note: Idle employee reporting removed - only tracking employees actually working
return result
if __name__ == "__main__":
optimizer = Optimizer()
optimizer.run_optimization() |