|
|
""" |
|
|
Kit Composition Data Cleaner |
|
|
|
|
|
This script converts the Kit_Composition_and_relation.csv file into a cleaned format |
|
|
with line types according to the following rules: |
|
|
|
|
|
1. Master Kits: |
|
|
- If appears only once (standalone master): line_type = "long line" |
|
|
- If appears multiple times: line_type = "" (empty/theoretical) |
|
|
|
|
|
2. Sub Kits: |
|
|
- All sub kits get line_type = "long line" |
|
|
|
|
|
3. Prepacks: |
|
|
- All prepacks get line_type = "miniload" |
|
|
|
|
|
The output includes columns: kit_name, kit_description, kit_type, line_type |
|
|
""" |
|
|
|
|
|
import pandas as pd |
|
|
import os |
|
|
from typing import Tuple |
|
|
|
|
|
|
|
|
class KitCompositionCleaner: |
|
|
""" |
|
|
Cleans and processes kit composition data with line type assignments. |
|
|
|
|
|
This class maintains state across processing steps, allowing for: |
|
|
- Single data load |
|
|
- Step-by-step processing |
|
|
- Intermediate result storage |
|
|
""" |
|
|
|
|
|
def __init__(self, input_file: str, output_file: str = None): |
|
|
""" |
|
|
Initialize the cleaner with file paths. |
|
|
|
|
|
Args: |
|
|
input_file: Path to input CSV file (Kit_Composition_and_relation.csv) |
|
|
output_file: Path to output CSV file (optional, can be set later) |
|
|
""" |
|
|
self.input_file = input_file |
|
|
self.output_file = output_file |
|
|
|
|
|
|
|
|
self.df = None |
|
|
self.master_df = None |
|
|
self.subkit_df = None |
|
|
self.prepack_df = None |
|
|
self.final_df = None |
|
|
|
|
|
def load_data(self) -> pd.DataFrame: |
|
|
"""Load the Kit Composition and relation CSV file.""" |
|
|
if not os.path.exists(self.input_file): |
|
|
raise FileNotFoundError(f"File not found: {self.input_file}") |
|
|
|
|
|
self.df = pd.read_csv(self.input_file) |
|
|
print(f"Loaded {len(self.df)} rows from {self.input_file}") |
|
|
return self.df |
|
|
|
|
|
def process_master_kits(self) -> pd.DataFrame: |
|
|
""" |
|
|
Process Master Kits according to business rules: |
|
|
- Standalone masters (no subkits/prepacks, only components): line_type = "long line" |
|
|
- Non-standalone masters (have subkits/prepacks): line_type = "" (empty - no production needed) |
|
|
""" |
|
|
if self.df is None: |
|
|
raise ValueError("Data not loaded. Call load_data() first.") |
|
|
|
|
|
print("Processing Master Kits...") |
|
|
|
|
|
|
|
|
masters_with_subkits = set(self.df[self.df['Sub kit'].notna()]['Master Kit'].unique()) |
|
|
masters_with_prepacks = set(self.df[self.df['Prepack'].notna()]['Master Kit'].unique()) |
|
|
masters_with_hierarchy = masters_with_subkits.union(masters_with_prepacks) |
|
|
|
|
|
|
|
|
all_masters = set(self.df['Master Kit'].unique()) |
|
|
|
|
|
|
|
|
standalone_masters = all_masters - masters_with_hierarchy |
|
|
|
|
|
print(f"Total unique Master Kits: {len(all_masters)}") |
|
|
print(f"Masters with subkits/prepacks: {len(masters_with_hierarchy)}") |
|
|
print(f"Standalone masters (only components): {len(standalone_masters)}") |
|
|
|
|
|
|
|
|
master_data = [] |
|
|
|
|
|
|
|
|
unique_masters = self.df[['Master Kit', 'Master Kit Description']].drop_duplicates() |
|
|
|
|
|
for _, row in unique_masters.iterrows(): |
|
|
master_kit = row['Master Kit'] |
|
|
master_desc = row['Master Kit Description'] |
|
|
|
|
|
|
|
|
if master_kit in standalone_masters: |
|
|
line_type = "long line" |
|
|
else: |
|
|
line_type = "" |
|
|
|
|
|
master_data.append({ |
|
|
'kit_name': master_kit, |
|
|
'kit_description': master_desc, |
|
|
'kit_type': 'master', |
|
|
'line_type': line_type |
|
|
}) |
|
|
|
|
|
self.master_df = pd.DataFrame(master_data) |
|
|
|
|
|
|
|
|
return self.master_df |
|
|
|
|
|
def process_sub_kits(self) -> pd.DataFrame: |
|
|
""" |
|
|
Process Sub Kits according to business rules: |
|
|
- All sub kits get line_type = "long line" |
|
|
- Remove duplicates |
|
|
""" |
|
|
if self.df is None: |
|
|
raise ValueError("Data not loaded. Call load_data() first.") |
|
|
|
|
|
print("Processing Sub Kits...") |
|
|
|
|
|
|
|
|
subkit_df = self.df[self.df['Sub kit'].notna()].copy() |
|
|
|
|
|
if len(subkit_df) == 0: |
|
|
print("No sub kits found") |
|
|
self.subkit_df = pd.DataFrame(columns=['kit_name', 'kit_description', 'kit_type', 'line_type']) |
|
|
return self.subkit_df |
|
|
|
|
|
|
|
|
unique_subkits = subkit_df[['Sub kit', 'Sub kit description']].drop_duplicates() |
|
|
|
|
|
subkit_data = [] |
|
|
for _, row in unique_subkits.iterrows(): |
|
|
subkit_data.append({ |
|
|
'kit_name': row['Sub kit'], |
|
|
'kit_description': row['Sub kit description'], |
|
|
'kit_type': 'subkit', |
|
|
'line_type': 'long line' |
|
|
}) |
|
|
|
|
|
self.subkit_df = pd.DataFrame(subkit_data) |
|
|
print(f"Created {len(self.subkit_df)} sub kit records") |
|
|
|
|
|
return self.subkit_df |
|
|
|
|
|
def process_prepacks(self) -> pd.DataFrame: |
|
|
""" |
|
|
Process Prepacks according to business rules: |
|
|
- All prepacks get line_type = "miniload" |
|
|
- Remove duplicates |
|
|
""" |
|
|
if self.df is None: |
|
|
raise ValueError("Data not loaded. Call load_data() first.") |
|
|
|
|
|
print("Processing Prepacks...") |
|
|
|
|
|
|
|
|
prepack_df = self.df[self.df['Prepack'].notna()].copy() |
|
|
|
|
|
if len(prepack_df) == 0: |
|
|
print("No prepacks found") |
|
|
self.prepack_df = pd.DataFrame(columns=['kit_name', 'kit_description', 'kit_type', 'line_type']) |
|
|
return self.prepack_df |
|
|
|
|
|
|
|
|
unique_prepacks = prepack_df[['Prepack', 'Prepack Description']].drop_duplicates() |
|
|
|
|
|
prepack_data = [] |
|
|
for _, row in unique_prepacks.iterrows(): |
|
|
prepack_data.append({ |
|
|
'kit_name': row['Prepack'], |
|
|
'kit_description': row['Prepack Description'], |
|
|
'kit_type': 'prepack', |
|
|
'line_type': 'miniload' |
|
|
}) |
|
|
|
|
|
self.prepack_df = pd.DataFrame(prepack_data) |
|
|
print(f"Created {len(self.prepack_df)} prepack records") |
|
|
|
|
|
return self.prepack_df |
|
|
|
|
|
def concatenate_and_save(self, output_path: str = None) -> pd.DataFrame: |
|
|
""" |
|
|
Concatenate all processed dataframes and save to output file. |
|
|
|
|
|
Args: |
|
|
output_path: Path to save the output file (uses self.output_file if not provided) |
|
|
""" |
|
|
if self.master_df is None or self.subkit_df is None or self.prepack_df is None: |
|
|
raise ValueError("Processing not complete. Run process_master_kits(), process_sub_kits(), and process_prepacks() first.") |
|
|
|
|
|
print("Concatenating results...") |
|
|
|
|
|
|
|
|
self.final_df = pd.concat([self.master_df, self.subkit_df, self.prepack_df], ignore_index=True) |
|
|
|
|
|
|
|
|
self.final_df['line_type'] = self.final_df['line_type'].fillna('') |
|
|
|
|
|
|
|
|
self.final_df = self.final_df.sort_values(['kit_type', 'kit_name']).reset_index(drop=True) |
|
|
|
|
|
print(f"Final dataset contains {len(self.final_df)} records:") |
|
|
print(f" - Masters: {len(self.master_df)}") |
|
|
print(f" - Subkits: {len(self.subkit_df)}") |
|
|
print(f" - Prepacks: {len(self.prepack_df)}") |
|
|
|
|
|
|
|
|
save_path = output_path or self.output_file |
|
|
if save_path is None: |
|
|
raise ValueError("No output path provided. Specify output_path parameter or set self.output_file") |
|
|
|
|
|
|
|
|
self.final_df.to_csv(save_path, index=False, na_rep='') |
|
|
print(f"Saved cleaned data to: {save_path}") |
|
|
|
|
|
return self.final_df |
|
|
|
|
|
|
|
|
def main(): |
|
|
"""Main function to execute the kit composition cleaning process.""" |
|
|
|
|
|
base_dir = "/Users/halimjun/Coding_local/SD_roster_real" |
|
|
input_file = os.path.join(base_dir, "data/real_data_excel/converted_csv/Kit_Composition_and_relation.csv") |
|
|
output_file = os.path.join(base_dir, "data/real_data_excel/converted_csv/Kit_Composition_and_relation_cleaned_with_line_type.csv") |
|
|
|
|
|
try: |
|
|
|
|
|
cleaner = KitCompositionCleaner(input_file, output_file) |
|
|
|
|
|
|
|
|
cleaner.load_data() |
|
|
cleaner.process_master_kits() |
|
|
cleaner.process_sub_kits() |
|
|
cleaner.process_prepacks() |
|
|
final_df = cleaner.concatenate_and_save() |
|
|
|
|
|
|
|
|
print("Line type distribution:") |
|
|
print(final_df['line_type'].value_counts(dropna=False)) |
|
|
print("\nKit type distribution:") |
|
|
print(final_df['kit_type'].value_counts()) |
|
|
|
|
|
print("\nSample of final data:") |
|
|
print(final_df.head(10)) |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ Error processing kit composition data: {e}") |
|
|
raise |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|