Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import pandas as pd
|
|
@@ -6,6 +7,9 @@ import joblib
|
|
| 6 |
import requests
|
| 7 |
import streamlit as st
|
| 8 |
from streamlit_autorefresh import st_autorefresh
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Auto-refresh every 5 seconds
|
| 11 |
st_autorefresh(interval=5000, key="refresh")
|
|
@@ -62,12 +66,12 @@ def get_next_row():
|
|
| 62 |
|
| 63 |
# Feature engineering
|
| 64 |
def engineer(df):
|
| 65 |
-
# Handle timestamp
|
| 66 |
if pd.api.types.is_numeric_dtype(df["timestamp"]):
|
| 67 |
df["datetime"] = pd.to_datetime(df["timestamp"], unit="s")
|
| 68 |
else:
|
| 69 |
df["datetime"] = pd.to_datetime(df["timestamp"])
|
| 70 |
|
|
|
|
| 71 |
df["hour_of_day"] = df["datetime"].dt.hour
|
| 72 |
df["lag_30min"] = df["power_consumption_kwh"].shift(1)
|
| 73 |
df["lag_1h"] = df["power_consumption_kwh"].shift(2)
|
|
@@ -77,17 +81,11 @@ def engineer(df):
|
|
| 77 |
df["hour_sin"] = np.sin(2 * np.pi * df["hour_of_day"] / 24)
|
| 78 |
df["hour_cos"] = np.cos(2 * np.pi * df["hour_of_day"] / 24)
|
| 79 |
|
| 80 |
-
# One-hot encode property_type and region
|
| 81 |
df = pd.get_dummies(df, columns=["property_type", "region"], drop_first=False)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
# Ensure all expected features exist
|
| 86 |
expected_features = [
|
| 87 |
-
'lag_30min', 'lag_1h',
|
| 88 |
-
'
|
| 89 |
-
'hour_of_day', 'is_weekend',
|
| 90 |
-
'hour_sin', 'hour_cos',
|
| 91 |
'temperature_c', 'ev_owner', 'solar_installed',
|
| 92 |
'property_type_commercial', 'property_type_residential',
|
| 93 |
'region_north', 'region_south', 'region_east', 'region_west'
|
|
@@ -99,37 +97,68 @@ def engineer(df):
|
|
| 99 |
|
| 100 |
return df
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
new_row = get_next_row()
|
| 109 |
-
|
| 110 |
if not new_row.empty:
|
| 111 |
st.session_state.history = pd.concat([st.session_state.history, new_row], ignore_index=True)
|
| 112 |
df_feat = engineer(st.session_state.history).dropna()
|
| 113 |
-
|
| 114 |
if not df_feat.empty:
|
| 115 |
-
latest_input = df_feat.iloc[[-1]][[
|
| 116 |
-
'lag_30min', 'lag_1h',
|
| 117 |
-
'rolling_avg_1h', 'rolling_avg_2h',
|
| 118 |
-
'hour_of_day', 'is_weekend',
|
| 119 |
-
'hour_sin', 'hour_cos',
|
| 120 |
-
'temperature_c', 'ev_owner', 'solar_installed',
|
| 121 |
-
'property_type_commercial', 'property_type_residential',
|
| 122 |
-
'region_north', 'region_south', 'region_east', 'region_west'
|
| 123 |
-
]]
|
| 124 |
-
|
| 125 |
prediction = model.predict(latest_input)[0]
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
else:
|
| 135 |
st.success("โ
All data processed.")
|
|
|
|
| 1 |
+
|
| 2 |
import os
|
| 3 |
import time
|
| 4 |
import pandas as pd
|
|
|
|
| 7 |
import requests
|
| 8 |
import streamlit as st
|
| 9 |
from streamlit_autorefresh import st_autorefresh
|
| 10 |
+
from sklearn.metrics import mean_absolute_error
|
| 11 |
+
import plotly.express as px
|
| 12 |
+
import plotly.graph_objects as go
|
| 13 |
|
| 14 |
# Auto-refresh every 5 seconds
|
| 15 |
st_autorefresh(interval=5000, key="refresh")
|
|
|
|
| 66 |
|
| 67 |
# Feature engineering
|
| 68 |
def engineer(df):
|
|
|
|
| 69 |
if pd.api.types.is_numeric_dtype(df["timestamp"]):
|
| 70 |
df["datetime"] = pd.to_datetime(df["timestamp"], unit="s")
|
| 71 |
else:
|
| 72 |
df["datetime"] = pd.to_datetime(df["timestamp"])
|
| 73 |
|
| 74 |
+
df = df.sort_values("datetime")
|
| 75 |
df["hour_of_day"] = df["datetime"].dt.hour
|
| 76 |
df["lag_30min"] = df["power_consumption_kwh"].shift(1)
|
| 77 |
df["lag_1h"] = df["power_consumption_kwh"].shift(2)
|
|
|
|
| 81 |
df["hour_sin"] = np.sin(2 * np.pi * df["hour_of_day"] / 24)
|
| 82 |
df["hour_cos"] = np.cos(2 * np.pi * df["hour_of_day"] / 24)
|
| 83 |
|
|
|
|
| 84 |
df = pd.get_dummies(df, columns=["property_type", "region"], drop_first=False)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
expected_features = [
|
| 87 |
+
'lag_30min', 'lag_1h', 'rolling_avg_1h', 'rolling_avg_2h',
|
| 88 |
+
'hour_of_day', 'is_weekend', 'hour_sin', 'hour_cos',
|
|
|
|
|
|
|
| 89 |
'temperature_c', 'ev_owner', 'solar_installed',
|
| 90 |
'property_type_commercial', 'property_type_residential',
|
| 91 |
'region_north', 'region_south', 'region_east', 'region_west'
|
|
|
|
| 97 |
|
| 98 |
return df
|
| 99 |
|
| 100 |
+
# Forecast ahead logic
|
| 101 |
+
def forecast_next(df, model, steps=5):
|
| 102 |
+
forecasts = []
|
| 103 |
+
df_copy = df.copy()
|
| 104 |
+
for i in range(steps):
|
| 105 |
+
df_copy = engineer(df_copy).dropna()
|
| 106 |
+
input_row = df_copy.iloc[[-1]][[col for col in df_copy.columns if col in model.feature_names_in_]]
|
| 107 |
+
y_pred = model.predict(input_row)[0]
|
| 108 |
+
df_copy.loc[df_copy.index[-1], "power_consumption_kwh"] = y_pred
|
| 109 |
+
df_copy = df_copy.append({**df_copy.iloc[-1], "power_consumption_kwh": y_pred, "timestamp": df_copy.iloc[-1].timestamp + 1800}, ignore_index=True)
|
| 110 |
+
forecasts.append({"timestamp": df_copy.iloc[-1].timestamp, "forecast_kwh": y_pred})
|
| 111 |
+
return pd.DataFrame(forecasts)
|
| 112 |
+
|
| 113 |
+
# UI Layout
|
| 114 |
+
st.set_page_config(layout="wide")
|
| 115 |
+
st.title("โก Gridflux: Real-Time Smart Meter Dashboard")
|
| 116 |
+
|
| 117 |
+
# Layout structure
|
| 118 |
+
col1, col2 = st.columns([2, 1])
|
| 119 |
+
|
| 120 |
+
# Data ingestion and prediction
|
| 121 |
new_row = get_next_row()
|
|
|
|
| 122 |
if not new_row.empty:
|
| 123 |
st.session_state.history = pd.concat([st.session_state.history, new_row], ignore_index=True)
|
| 124 |
df_feat = engineer(st.session_state.history).dropna()
|
|
|
|
| 125 |
if not df_feat.empty:
|
| 126 |
+
latest_input = df_feat.iloc[[-1]][[col for col in df_feat.columns if col in model.feature_names_in_]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
prediction = model.predict(latest_input)[0]
|
| 128 |
+
actual = new_row["power_consumption_kwh"].values[0]
|
| 129 |
+
mae = mean_absolute_error([actual], [prediction])
|
| 130 |
+
|
| 131 |
+
with col1:
|
| 132 |
+
st.subheader("๐ Real-Time Power Usage")
|
| 133 |
+
chart_df = st.session_state.history.copy()
|
| 134 |
+
chart_df["datetime"] = pd.to_datetime(chart_df["timestamp"])
|
| 135 |
+
chart_df.set_index("datetime", inplace=True)
|
| 136 |
+
st.line_chart(chart_df["power_consumption_kwh"], use_container_width=True)
|
| 137 |
+
|
| 138 |
+
st.subheader("๐ฎ Forecast (Next 2.5 Hours)")
|
| 139 |
+
future_df = forecast_next(df_feat, model, steps=5)
|
| 140 |
+
future_df["datetime"] = pd.to_datetime(future_df["timestamp"])
|
| 141 |
+
fig = px.line(future_df, x="datetime", y="forecast_kwh", title="Forecasted Power Usage (Next 2.5h)")
|
| 142 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 143 |
+
|
| 144 |
+
with col2:
|
| 145 |
+
st.metric("๐ฎ Predicted Power Usage (kWh)", f"{prediction:.3f}")
|
| 146 |
+
st.metric("โ
Actual Power Usage (kWh)", f"{actual:.3f}")
|
| 147 |
+
st.metric("๐ MAE", f"{mae:.3f}")
|
| 148 |
+
|
| 149 |
+
st.subheader("๐ Region-Wise Forecast")
|
| 150 |
+
for region in ["east", "west", "north", "south"]:
|
| 151 |
+
regional = df_feat[df_feat[f"region_{region}"] == 1]
|
| 152 |
+
if not regional.empty:
|
| 153 |
+
pred = model.predict(regional[[col for col in regional.columns if col in model.feature_names_in_]])
|
| 154 |
+
st.write(f"**{region.title()} Region**: Avg Forecast: {np.mean(pred):.3f} kWh")
|
| 155 |
+
|
| 156 |
+
st.subheader("๐ Property Type Forecast")
|
| 157 |
+
for region in ["east", "west", "north", "south"]:
|
| 158 |
+
for ptype in ["commercial", "residential"]:
|
| 159 |
+
filtered = df_feat[(df_feat[f"region_{region}"] == 1) & (df_feat[f"property_type_{ptype}"] == 1)]
|
| 160 |
+
if not filtered.empty:
|
| 161 |
+
preds = model.predict(filtered[[col for col in filtered.columns if col in model.feature_names_in_]])
|
| 162 |
+
st.write(f"{region.title()} / {ptype.title()}: {np.mean(preds):.2f} kWh")
|
| 163 |
else:
|
| 164 |
st.success("โ
All data processed.")
|