Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import json
|
| 4 |
+
from transformers import GPT2Config
|
| 5 |
+
from torch import nn
|
| 6 |
+
import requests
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
class TextGenerator(nn.Module):
|
| 10 |
+
def __init__(self, vocab_size, embedding_dim, hidden_dim):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim)
|
| 13 |
+
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
| 14 |
+
self.fc = nn.Linear(hidden_dim, vocab_size)
|
| 15 |
+
|
| 16 |
+
def forward(self, x):
|
| 17 |
+
x = self.embedding(x)
|
| 18 |
+
lstm_out, _ = self.lstm(x)
|
| 19 |
+
return self.fc(lstm_out)
|
| 20 |
+
|
| 21 |
+
def download_file(url, local_path):
|
| 22 |
+
response = requests.get(url)
|
| 23 |
+
if response.status_code == 200:
|
| 24 |
+
Path(local_path).parent.mkdir(parents=True, exist_ok=True)
|
| 25 |
+
with open(local_path, 'wb') as f:
|
| 26 |
+
f.write(response.content)
|
| 27 |
+
else:
|
| 28 |
+
raise Exception(f"Failed to download {url}")
|
| 29 |
+
|
| 30 |
+
def load_model_and_tokenizers():
|
| 31 |
+
# Create a local directory for downloaded files
|
| 32 |
+
cache_dir = Path("model_cache")
|
| 33 |
+
cache_dir.mkdir(exist_ok=True)
|
| 34 |
+
|
| 35 |
+
# URLs for the files
|
| 36 |
+
base_url = "https://huggingface.co/Omarrran/temp_data/raw/main"
|
| 37 |
+
files = {
|
| 38 |
+
"model.pt": f"{base_url}/model.pt",
|
| 39 |
+
"word_to_int.json": f"{base_url}/word_to_int.json",
|
| 40 |
+
"int_to_word.json": f"{base_url}/int_to_word.json",
|
| 41 |
+
"model_config.json": f"{base_url}/model_config.json"
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Download all files
|
| 45 |
+
for filename, url in files.items():
|
| 46 |
+
local_path = cache_dir / filename
|
| 47 |
+
if not local_path.exists():
|
| 48 |
+
print(f"Downloading {filename}...")
|
| 49 |
+
download_file(url, local_path)
|
| 50 |
+
|
| 51 |
+
# Load configuration
|
| 52 |
+
with open(cache_dir / "model_config.json", "r") as f:
|
| 53 |
+
config = json.load(f)
|
| 54 |
+
|
| 55 |
+
# Load tokenizers
|
| 56 |
+
with open(cache_dir / "word_to_int.json", "r") as f:
|
| 57 |
+
word_to_int = json.load(f)
|
| 58 |
+
with open(cache_dir / "int_to_word.json", "r") as f:
|
| 59 |
+
int_to_word = json.load(f)
|
| 60 |
+
|
| 61 |
+
# Initialize model
|
| 62 |
+
model = TextGenerator(
|
| 63 |
+
vocab_size=config['vocab_size'],
|
| 64 |
+
embedding_dim=config['embedding_dim'],
|
| 65 |
+
hidden_dim=config['hidden_dim']
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Load model weights
|
| 69 |
+
model.load_state_dict(torch.load(cache_dir / "model.pt", map_location=torch.device('cpu')))
|
| 70 |
+
model.eval()
|
| 71 |
+
|
| 72 |
+
return model, word_to_int, int_to_word
|
| 73 |
+
|
| 74 |
+
def generate_text(prompt, max_length=100):
|
| 75 |
+
# Load model and tokenizers (will use cached files after first load)
|
| 76 |
+
model, word_to_int, int_to_word = load_model_and_tokenizers()
|
| 77 |
+
|
| 78 |
+
# Tokenize input prompt
|
| 79 |
+
input_ids = [word_to_int.get(word, word_to_int['<UNK>']) for word in prompt.split()]
|
| 80 |
+
input_tensor = torch.tensor([input_ids])
|
| 81 |
+
|
| 82 |
+
# Generate text
|
| 83 |
+
generated_ids = input_ids.copy()
|
| 84 |
+
|
| 85 |
+
with torch.no_grad():
|
| 86 |
+
for _ in range(max_length):
|
| 87 |
+
current_input = torch.tensor([generated_ids[-50:]]) # Use last 50 tokens as context
|
| 88 |
+
outputs = model(current_input)
|
| 89 |
+
next_token_id = outputs[0, -1, :].argmax().item()
|
| 90 |
+
generated_ids.append(next_token_id)
|
| 91 |
+
|
| 92 |
+
if next_token_id == word_to_int.get('<EOS>', 0):
|
| 93 |
+
break
|
| 94 |
+
|
| 95 |
+
# Convert ids back to text
|
| 96 |
+
generated_text = ' '.join([int_to_word.get(str(idx), '<UNK>') for idx in generated_ids])
|
| 97 |
+
return generated_text
|
| 98 |
+
|
| 99 |
+
# Create Gradio interface
|
| 100 |
+
iface = gr.Interface(
|
| 101 |
+
fn=generate_text,
|
| 102 |
+
inputs=[
|
| 103 |
+
gr.Textbox(label="Enter your prompt", placeholder="Type your text here..."),
|
| 104 |
+
gr.Slider(minimum=10, maximum=200, value=100, label="Maximum length", step=1)
|
| 105 |
+
],
|
| 106 |
+
outputs=gr.Textbox(label="Generated Text"),
|
| 107 |
+
title="Text Generation Model",
|
| 108 |
+
description="Enter a prompt and the model will generate text based on it.",
|
| 109 |
+
examples=[
|
| 110 |
+
["The quick brown fox"],
|
| 111 |
+
["Once upon a time"],
|
| 112 |
+
["In a galaxy far"]
|
| 113 |
+
]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Launch the interface
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
iface.launch()
|