update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import gradio as gr
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
import pandas as pd
|
| 5 |
-
import
|
| 6 |
from datasets import load_dataset
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
|
|
@@ -13,7 +13,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 13 |
zero = torch.Tensor([0]).to(device)
|
| 14 |
print(f"Device being used: {zero.device}")
|
| 15 |
|
| 16 |
-
@spaces.GPU
|
| 17 |
def evaluate_model(model_id):
|
| 18 |
model = SentenceTransformer(model_id, device=device)
|
| 19 |
matryoshka_dimensions = [768, 512, 256, 128, 64]
|
|
@@ -21,7 +21,7 @@ def evaluate_model(model_id):
|
|
| 21 |
# Prepare datasets
|
| 22 |
datasets_info = [
|
| 23 |
{
|
| 24 |
-
"name": "
|
| 25 |
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
|
| 26 |
"split": "train",
|
| 27 |
"size": 7000,
|
|
@@ -29,7 +29,7 @@ def evaluate_model(model_id):
|
|
| 29 |
"sample_size": 500
|
| 30 |
},
|
| 31 |
{
|
| 32 |
-
"name": "MLQA
|
| 33 |
"dataset_id": "google/xtreme",
|
| 34 |
"subset": "MLQA.ar.ar",
|
| 35 |
"split": "validation",
|
|
@@ -38,7 +38,7 @@ def evaluate_model(model_id):
|
|
| 38 |
"sample_size": 500
|
| 39 |
},
|
| 40 |
{
|
| 41 |
-
"name": "ARCD
|
| 42 |
"dataset_id": "hsseinmz/arcd",
|
| 43 |
"split": "train",
|
| 44 |
"size": None,
|
|
@@ -105,24 +105,32 @@ def evaluate_model(model_id):
|
|
| 105 |
})
|
| 106 |
scores.append(score)
|
| 107 |
|
| 108 |
-
# Store scores by dataset for
|
| 109 |
scores_by_dataset[dataset_info["name"]] = scores
|
| 110 |
|
| 111 |
# Convert results to DataFrame for display
|
| 112 |
result_df = pd.DataFrame(evaluation_results)
|
| 113 |
|
| 114 |
-
# Generate bar charts for each dataset
|
| 115 |
charts = []
|
| 116 |
-
|
|
|
|
| 117 |
for dataset_name, scores in scores_by_dataset.items():
|
| 118 |
-
fig
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
charts.append(fig)
|
| 127 |
|
| 128 |
return result_df, charts[0], charts[1], charts[2]
|
|
@@ -134,32 +142,23 @@ def display_results(model_name):
|
|
| 134 |
|
| 135 |
demo = gr.Interface(
|
| 136 |
fn=display_results,
|
| 137 |
-
inputs=gr.Textbox(label="Enter
|
| 138 |
outputs=[
|
| 139 |
gr.Dataframe(label="Evaluation Results"),
|
| 140 |
-
gr.Plot(label="
|
| 141 |
-
gr.Plot(label="MLQA
|
| 142 |
-
gr.Plot(label="ARCD
|
| 143 |
],
|
| 144 |
-
title="
|
| 145 |
description=(
|
| 146 |
-
"Evaluate your Sentence Transformer model
|
| 147 |
-
"
|
| 148 |
-
"
|
| 149 |
-
"
|
| 150 |
-
"**Evaluation Metric:**\n"
|
| 151 |
-
"The evaluation uses **NDCG@10** (Normalized Discounted Cumulative Gain), which measures how well the retrieved documents (contexts) match the query relevance.\n"
|
| 152 |
-
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
|
| 153 |
),
|
| 154 |
theme="default",
|
| 155 |
live=False,
|
| 156 |
css="footer {visibility: hidden;}"
|
| 157 |
)
|
| 158 |
|
| 159 |
-
demo.launch(share=True)
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
demo.launch(share=True)
|
| 163 |
-
|
| 164 |
-
# Add the footer
|
| 165 |
-
print("\nCreated by Omar Najar | Omartificial Intelligence Space")
|
|
|
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
import pandas as pd
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
from datasets import load_dataset
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
|
|
|
|
| 13 |
zero = torch.Tensor([0]).to(device)
|
| 14 |
print(f"Device being used: {zero.device}")
|
| 15 |
|
| 16 |
+
@spaces.GPU
|
| 17 |
def evaluate_model(model_id):
|
| 18 |
model = SentenceTransformer(model_id, device=device)
|
| 19 |
matryoshka_dimensions = [768, 512, 256, 128, 64]
|
|
|
|
| 21 |
# Prepare datasets
|
| 22 |
datasets_info = [
|
| 23 |
{
|
| 24 |
+
"name": "Financial",
|
| 25 |
"dataset_id": "Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset",
|
| 26 |
"split": "train",
|
| 27 |
"size": 7000,
|
|
|
|
| 29 |
"sample_size": 500
|
| 30 |
},
|
| 31 |
{
|
| 32 |
+
"name": "MLQA",
|
| 33 |
"dataset_id": "google/xtreme",
|
| 34 |
"subset": "MLQA.ar.ar",
|
| 35 |
"split": "validation",
|
|
|
|
| 38 |
"sample_size": 500
|
| 39 |
},
|
| 40 |
{
|
| 41 |
+
"name": "ARCD",
|
| 42 |
"dataset_id": "hsseinmz/arcd",
|
| 43 |
"split": "train",
|
| 44 |
"size": None,
|
|
|
|
| 105 |
})
|
| 106 |
scores.append(score)
|
| 107 |
|
| 108 |
+
# Store scores by dataset for plot creation
|
| 109 |
scores_by_dataset[dataset_info["name"]] = scores
|
| 110 |
|
| 111 |
# Convert results to DataFrame for display
|
| 112 |
result_df = pd.DataFrame(evaluation_results)
|
| 113 |
|
| 114 |
+
# Generate bar charts for each dataset using Plotly
|
| 115 |
charts = []
|
| 116 |
+
color_scale = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087']
|
| 117 |
+
|
| 118 |
for dataset_name, scores in scores_by_dataset.items():
|
| 119 |
+
fig = go.Figure()
|
| 120 |
+
fig.add_trace(go.Bar(
|
| 121 |
+
x=[str(dim) for dim in matryoshka_dimensions],
|
| 122 |
+
y=scores,
|
| 123 |
+
marker_color=color_scale,
|
| 124 |
+
text=[f"{score:.3f}" if score else "N/A" for score in scores],
|
| 125 |
+
textposition='auto'
|
| 126 |
+
))
|
| 127 |
+
|
| 128 |
+
fig.update_layout(
|
| 129 |
+
title=f"{dataset_name} Evaluation",
|
| 130 |
+
xaxis_title="Embedding Dimension",
|
| 131 |
+
yaxis_title="NDCG@10 Score",
|
| 132 |
+
template="plotly_white"
|
| 133 |
+
)
|
| 134 |
charts.append(fig)
|
| 135 |
|
| 136 |
return result_df, charts[0], charts[1], charts[2]
|
|
|
|
| 142 |
|
| 143 |
demo = gr.Interface(
|
| 144 |
fn=display_results,
|
| 145 |
+
inputs=gr.Textbox(label="Enter a Hugging Face Model ID", placeholder="e.g., sentence-transformers/all-MiniLM-L6-v2"),
|
| 146 |
outputs=[
|
| 147 |
gr.Dataframe(label="Evaluation Results"),
|
| 148 |
+
gr.Plot(label="Financial Dataset"),
|
| 149 |
+
gr.Plot(label="MLQA Dataset"),
|
| 150 |
+
gr.Plot(label="ARCD Dataset")
|
| 151 |
],
|
| 152 |
+
title="Arabic Embedding Evaluation",
|
| 153 |
description=(
|
| 154 |
+
"Evaluate your Sentence Transformer model on **Arabic retrieval tasks** using Matryoshka embeddings. "
|
| 155 |
+
"Compare performance across financial, long-context, and short-context datasets.\n\n"
|
| 156 |
+
"The evaluation uses **NDCG@10** to measure how well the model retrieves relevant contexts. "
|
| 157 |
+
"Embedding dimensions are reduced from 768 to 64."
|
|
|
|
|
|
|
|
|
|
| 158 |
),
|
| 159 |
theme="default",
|
| 160 |
live=False,
|
| 161 |
css="footer {visibility: hidden;}"
|
| 162 |
)
|
| 163 |
|
| 164 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|