add_mrr@10 (#2)
Browse files- add mrr@10 metric (35169609ea9b6927be595b5d5e6ae472a2ab9eb5)
app.py
CHANGED
|
@@ -13,6 +13,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 13 |
zero = torch.Tensor([0]).to(device)
|
| 14 |
print(f"Device being used: {zero.device}")
|
| 15 |
|
|
|
|
| 16 |
@spaces.GPU
|
| 17 |
def evaluate_model(model_id, num_questions):
|
| 18 |
model = SentenceTransformer(model_id, device=device)
|
|
@@ -44,7 +45,7 @@ def evaluate_model(model_id, num_questions):
|
|
| 44 |
"last_rows": True # Take the last num_questions rows
|
| 45 |
}
|
| 46 |
]
|
| 47 |
-
|
| 48 |
evaluation_results = []
|
| 49 |
scores_by_dataset = {}
|
| 50 |
|
|
@@ -57,25 +58,26 @@ def evaluate_model(model_id, num_questions):
|
|
| 57 |
|
| 58 |
# Select the required number of rows
|
| 59 |
if dataset_info.get("last_rows"):
|
| 60 |
-
dataset = dataset.select(
|
|
|
|
| 61 |
else:
|
| 62 |
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
|
| 63 |
-
|
| 64 |
# Rename columns to 'anchor' and 'positive'
|
| 65 |
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
|
| 66 |
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
|
| 67 |
-
|
| 68 |
# Check if "id" column already exists before adding it
|
| 69 |
if "id" not in dataset.column_names:
|
| 70 |
dataset = dataset.add_column("id", range(len(dataset)))
|
| 71 |
-
|
| 72 |
# Prepare queries and corpus
|
| 73 |
corpus = dict(zip(dataset["id"], dataset["positive"]))
|
| 74 |
queries = dict(zip(dataset["id"], dataset["anchor"]))
|
| 75 |
-
|
| 76 |
# Create a mapping of relevant documents (1 in our case) for each query
|
| 77 |
relevant_docs = {q_id: [q_id] for q_id in queries}
|
| 78 |
-
|
| 79 |
matryoshka_evaluators = []
|
| 80 |
for dim in matryoshka_dimensions:
|
| 81 |
ir_evaluator = InformationRetrievalEvaluator(
|
|
@@ -84,66 +86,91 @@ def evaluate_model(model_id, num_questions):
|
|
| 84 |
relevant_docs=relevant_docs,
|
| 85 |
name=f"dim_{dim}",
|
| 86 |
truncate_dim=dim,
|
| 87 |
-
score_functions={"cosine": cos_sim}
|
| 88 |
)
|
| 89 |
matryoshka_evaluators.append(ir_evaluator)
|
| 90 |
|
| 91 |
evaluator = SequentialEvaluator(matryoshka_evaluators)
|
| 92 |
results = evaluator(model)
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 95 |
for dim in matryoshka_dimensions:
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
evaluation_results.append({
|
| 99 |
"Dataset": dataset_info["name"],
|
| 100 |
"Dimension": dim,
|
| 101 |
-
"
|
|
|
|
| 102 |
})
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
# Store scores by dataset for plot creation
|
| 106 |
-
scores_by_dataset[dataset_info["name"]] =
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Convert results to DataFrame for display
|
| 109 |
result_df = pd.DataFrame(evaluation_results)
|
| 110 |
|
| 111 |
# Generate bar charts for each dataset using Plotly
|
| 112 |
charts = []
|
| 113 |
-
|
|
|
|
| 114 |
|
| 115 |
for dataset_name, scores in scores_by_dataset.items():
|
| 116 |
fig = go.Figure()
|
|
|
|
| 117 |
fig.add_trace(go.Bar(
|
| 118 |
x=[str(dim) for dim in matryoshka_dimensions],
|
| 119 |
-
y=scores,
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
textposition='auto'
|
| 123 |
))
|
| 124 |
|
| 125 |
fig.update_layout(
|
| 126 |
title=f"{dataset_name} Evaluation",
|
| 127 |
xaxis_title="Embedding Dimension",
|
| 128 |
-
yaxis_title="
|
|
|
|
| 129 |
template="plotly_white"
|
| 130 |
)
|
| 131 |
charts.append(fig)
|
| 132 |
|
| 133 |
return result_df, charts[0], charts[1], charts[2]
|
| 134 |
|
|
|
|
| 135 |
# Define the Gradio interface
|
| 136 |
def display_results(model_name, num_questions):
|
| 137 |
result_df, chart1, chart2, chart3 = evaluate_model(model_name, num_questions)
|
| 138 |
return result_df, chart1, chart2, chart3
|
| 139 |
|
|
|
|
| 140 |
# Gradio interface with a slider to choose the number of questions (1 to 500)
|
| 141 |
demo = gr.Interface(
|
| 142 |
-
fn=display_results,
|
| 143 |
inputs=[
|
| 144 |
-
gr.Textbox(label="Enter a Hugging Face Model ID",
|
|
|
|
| 145 |
gr.Slider(label="Number of Questions", minimum=1, maximum=500, step=1, value=500)
|
| 146 |
-
],
|
| 147 |
outputs=[
|
| 148 |
gr.Dataframe(label="Evaluation Results"),
|
| 149 |
gr.Plot(label="Financial Dataset"),
|
|
@@ -156,8 +183,8 @@ demo = gr.Interface(
|
|
| 156 |
"- **ARCD** evaluates short context retrieval performance.\n"
|
| 157 |
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
|
| 158 |
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
|
| 159 |
-
"**Evaluation
|
| 160 |
-
"The evaluation uses **NDCG@10**
|
| 161 |
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
|
| 162 |
),
|
| 163 |
theme="default",
|
|
|
|
| 13 |
zero = torch.Tensor([0]).to(device)
|
| 14 |
print(f"Device being used: {zero.device}")
|
| 15 |
|
| 16 |
+
|
| 17 |
@spaces.GPU
|
| 18 |
def evaluate_model(model_id, num_questions):
|
| 19 |
model = SentenceTransformer(model_id, device=device)
|
|
|
|
| 45 |
"last_rows": True # Take the last num_questions rows
|
| 46 |
}
|
| 47 |
]
|
| 48 |
+
|
| 49 |
evaluation_results = []
|
| 50 |
scores_by_dataset = {}
|
| 51 |
|
|
|
|
| 58 |
|
| 59 |
# Select the required number of rows
|
| 60 |
if dataset_info.get("last_rows"):
|
| 61 |
+
dataset = dataset.select(
|
| 62 |
+
range(len(dataset) - dataset_info["sample_size"], len(dataset))) # Take last n rows
|
| 63 |
else:
|
| 64 |
dataset = dataset.select(range(min(dataset_info["sample_size"], len(dataset)))) # Take first n rows
|
| 65 |
+
|
| 66 |
# Rename columns to 'anchor' and 'positive'
|
| 67 |
dataset = dataset.rename_column(dataset_info["columns"][0], "anchor")
|
| 68 |
dataset = dataset.rename_column(dataset_info["columns"][1], "positive")
|
| 69 |
+
|
| 70 |
# Check if "id" column already exists before adding it
|
| 71 |
if "id" not in dataset.column_names:
|
| 72 |
dataset = dataset.add_column("id", range(len(dataset)))
|
| 73 |
+
|
| 74 |
# Prepare queries and corpus
|
| 75 |
corpus = dict(zip(dataset["id"], dataset["positive"]))
|
| 76 |
queries = dict(zip(dataset["id"], dataset["anchor"]))
|
| 77 |
+
|
| 78 |
# Create a mapping of relevant documents (1 in our case) for each query
|
| 79 |
relevant_docs = {q_id: [q_id] for q_id in queries}
|
| 80 |
+
|
| 81 |
matryoshka_evaluators = []
|
| 82 |
for dim in matryoshka_dimensions:
|
| 83 |
ir_evaluator = InformationRetrievalEvaluator(
|
|
|
|
| 86 |
relevant_docs=relevant_docs,
|
| 87 |
name=f"dim_{dim}",
|
| 88 |
truncate_dim=dim,
|
| 89 |
+
score_functions={"cosine": cos_sim}
|
| 90 |
)
|
| 91 |
matryoshka_evaluators.append(ir_evaluator)
|
| 92 |
|
| 93 |
evaluator = SequentialEvaluator(matryoshka_evaluators)
|
| 94 |
results = evaluator(model)
|
| 95 |
+
|
| 96 |
+
scores_ndcg = []
|
| 97 |
+
scores_mrr = []
|
| 98 |
for dim in matryoshka_dimensions:
|
| 99 |
+
ndcg_key = f"dim_{dim}_cosine_ndcg@10"
|
| 100 |
+
mrr_key = f"dim_{dim}_cosine_mrr@10"
|
| 101 |
+
ndcg_score = results[ndcg_key] if ndcg_key in results else None
|
| 102 |
+
mrr_score = results[mrr_key] if mrr_key in results else None
|
| 103 |
evaluation_results.append({
|
| 104 |
"Dataset": dataset_info["name"],
|
| 105 |
"Dimension": dim,
|
| 106 |
+
"NDCG@10": ndcg_score,
|
| 107 |
+
"MRR@10": mrr_score
|
| 108 |
})
|
| 109 |
+
scores_ndcg.append(ndcg_score)
|
| 110 |
+
scores_mrr.append(mrr_score)
|
| 111 |
|
| 112 |
# Store scores by dataset for plot creation
|
| 113 |
+
scores_by_dataset[dataset_info["name"]] = {
|
| 114 |
+
"NDCG@10": scores_ndcg,
|
| 115 |
+
"MRR@10": scores_mrr
|
| 116 |
+
}
|
| 117 |
|
| 118 |
# Convert results to DataFrame for display
|
| 119 |
result_df = pd.DataFrame(evaluation_results)
|
| 120 |
|
| 121 |
# Generate bar charts for each dataset using Plotly
|
| 122 |
charts = []
|
| 123 |
+
color_scale_ndcg = '#a05195'
|
| 124 |
+
color_scale_mrr = '#2f4b7c'
|
| 125 |
|
| 126 |
for dataset_name, scores in scores_by_dataset.items():
|
| 127 |
fig = go.Figure()
|
| 128 |
+
# NDCG@10 bars
|
| 129 |
fig.add_trace(go.Bar(
|
| 130 |
x=[str(dim) for dim in matryoshka_dimensions],
|
| 131 |
+
y=scores["NDCG@10"],
|
| 132 |
+
name="NDCG@10",
|
| 133 |
+
marker_color=color_scale_ndcg,
|
| 134 |
+
text=[f"{score:.3f}" if score else "N/A" for score in scores["NDCG@10"]],
|
| 135 |
+
textposition='auto'
|
| 136 |
+
))
|
| 137 |
+
|
| 138 |
+
# MRR@10 bars
|
| 139 |
+
fig.add_trace(go.Bar(
|
| 140 |
+
x=[str(dim) for dim in matryoshka_dimensions],
|
| 141 |
+
y=scores["MRR@10"],
|
| 142 |
+
name="MRR@10",
|
| 143 |
+
marker_color=color_scale_mrr,
|
| 144 |
+
text=[f"{score:.3f}" if score else "N/A" for score in scores["MRR@10"]],
|
| 145 |
textposition='auto'
|
| 146 |
))
|
| 147 |
|
| 148 |
fig.update_layout(
|
| 149 |
title=f"{dataset_name} Evaluation",
|
| 150 |
xaxis_title="Embedding Dimension",
|
| 151 |
+
yaxis_title="Score",
|
| 152 |
+
barmode='group', # Group bars
|
| 153 |
template="plotly_white"
|
| 154 |
)
|
| 155 |
charts.append(fig)
|
| 156 |
|
| 157 |
return result_df, charts[0], charts[1], charts[2]
|
| 158 |
|
| 159 |
+
|
| 160 |
# Define the Gradio interface
|
| 161 |
def display_results(model_name, num_questions):
|
| 162 |
result_df, chart1, chart2, chart3 = evaluate_model(model_name, num_questions)
|
| 163 |
return result_df, chart1, chart2, chart3
|
| 164 |
|
| 165 |
+
|
| 166 |
# Gradio interface with a slider to choose the number of questions (1 to 500)
|
| 167 |
demo = gr.Interface(
|
| 168 |
+
fn=display_results,
|
| 169 |
inputs=[
|
| 170 |
+
gr.Textbox(label="Enter a Hugging Face Model ID",
|
| 171 |
+
placeholder="e.g., Omartificial-Intelligence-Space/GATE-AraBert-v1"),
|
| 172 |
gr.Slider(label="Number of Questions", minimum=1, maximum=500, step=1, value=500)
|
| 173 |
+
],
|
| 174 |
outputs=[
|
| 175 |
gr.Dataframe(label="Evaluation Results"),
|
| 176 |
gr.Plot(label="Financial Dataset"),
|
|
|
|
| 183 |
"- **ARCD** evaluates short context retrieval performance.\n"
|
| 184 |
"- **MLQA Arabic** evaluates long context retrieval performance.\n"
|
| 185 |
"- **Arabic Financial Dataset** focuses on financial context retrieval.\n\n"
|
| 186 |
+
"**Evaluation Metrics:**\n"
|
| 187 |
+
"The evaluation uses **NDCG@10** and **MRR@10**, which measure how well the retrieved documents (contexts) match the query relevance.\n"
|
| 188 |
"Higher scores indicate better performance. Embedding dimensions are reduced from 768 to 64, evaluating how well the model performs with fewer dimensions."
|
| 189 |
),
|
| 190 |
theme="default",
|