Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +166 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
import librosa
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import spaces # For ZeroGPU
|
| 8 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
| 9 |
+
|
| 10 |
+
# ====== Settings ======
|
| 11 |
+
BASE_REPO = os.getenv("BASE_REPO", "HKUSTAudio/xcodec2") # Baseline (pretrained)
|
| 12 |
+
FT_REPO = os.getenv("FT_REPO", "NandemoGHS/Anime-XCodec2") # Fine-tuned (yours)
|
| 13 |
+
TARGET_SR = 16000 # XCodec2 expects 16 kHz
|
| 14 |
+
MAX_SECONDS_DEFAULT = 30 # Default max duration (seconds)
|
| 15 |
+
|
| 16 |
+
def _ensure_models():
|
| 17 |
+
"""Load both models to CPU once, and reuse across requests."""
|
| 18 |
+
global _model_base, _model_ft
|
| 19 |
+
if _model_base is None:
|
| 20 |
+
_model_base = XCodec2Model.from_pretrained(BASE_REPO).eval().to("cpu")
|
| 21 |
+
if _model_ft is None:
|
| 22 |
+
_model_ft = XCodec2Model.from_pretrained(FT_REPO).eval().to("cpu")
|
| 23 |
+
|
| 24 |
+
# ====== Globals (lazy CPU load; move to GPU only during inference) ======
|
| 25 |
+
_model_base = None
|
| 26 |
+
_model_ft = None
|
| 27 |
+
|
| 28 |
+
_ensure_models()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def _load_audio(filepath: str, max_seconds: int):
|
| 32 |
+
"""
|
| 33 |
+
Load audio (wav/flac/ogg/mp3), convert to mono, resample to 16 kHz,
|
| 34 |
+
trim to the given max length (from the beginning), and return torch.Tensor (1, T).
|
| 35 |
+
"""
|
| 36 |
+
# Try soundfile first, then fall back to librosa
|
| 37 |
+
try:
|
| 38 |
+
wav, sr = sf.read(filepath, dtype="float32", always_2d=False)
|
| 39 |
+
except Exception:
|
| 40 |
+
wav, sr = librosa.load(filepath, sr=None, mono=False)
|
| 41 |
+
wav = np.asarray(wav, dtype=np.float32)
|
| 42 |
+
|
| 43 |
+
# Mono
|
| 44 |
+
if wav.ndim == 2:
|
| 45 |
+
# soundfile often returns (frames, channels)
|
| 46 |
+
if wav.shape[1] in (1, 2): # (frames, ch)
|
| 47 |
+
wav = wav.mean(axis=1)
|
| 48 |
+
else: # Possibly (ch, frames)
|
| 49 |
+
wav = wav.mean(axis=0)
|
| 50 |
+
elif wav.ndim > 2:
|
| 51 |
+
wav = np.mean(wav, axis=tuple(range(1, wav.ndim)))
|
| 52 |
+
|
| 53 |
+
# Resample to 16 kHz
|
| 54 |
+
if sr != TARGET_SR:
|
| 55 |
+
wav = librosa.resample(wav, orig_sr=sr, target_sr=TARGET_SR)
|
| 56 |
+
sr = TARGET_SR
|
| 57 |
+
|
| 58 |
+
# Length cap
|
| 59 |
+
if max_seconds is None or max_seconds <= 0:
|
| 60 |
+
max_seconds = MAX_SECONDS_DEFAULT
|
| 61 |
+
max_len = int(sr * max_seconds)
|
| 62 |
+
if wav.shape[0] > max_len:
|
| 63 |
+
wav = wav[:max_len]
|
| 64 |
+
|
| 65 |
+
# Light safety normalization
|
| 66 |
+
peak = np.max(np.abs(wav))
|
| 67 |
+
if peak > 1.0:
|
| 68 |
+
wav = wav / (peak + 1e-8)
|
| 69 |
+
|
| 70 |
+
wav_tensor = torch.from_numpy(wav).float().unsqueeze(0) # (1, T)
|
| 71 |
+
return wav_tensor, sr
|
| 72 |
+
|
| 73 |
+
def _codes_to_tensor(codes, device):
|
| 74 |
+
"""
|
| 75 |
+
Normalize the output of xcodec2.encode_code to a tensor with shape (1, 1, N).
|
| 76 |
+
Handles version differences where the return type/shape may vary.
|
| 77 |
+
"""
|
| 78 |
+
if isinstance(codes, torch.Tensor):
|
| 79 |
+
return codes.to(device)
|
| 80 |
+
try:
|
| 81 |
+
t = torch.as_tensor(codes[0][0], device=device)
|
| 82 |
+
return t.unsqueeze(0).unsqueeze(0) if t.ndim == 1 else t
|
| 83 |
+
except Exception:
|
| 84 |
+
return torch.as_tensor(codes, device=device)
|
| 85 |
+
|
| 86 |
+
def _reconstruct(model: XCodec2Model, waveform: torch.Tensor, device: str) -> np.ndarray:
|
| 87 |
+
"""Encode→decode with XCodec2 to get a reconstructed waveform (np.float32, clipped to [-1, 1])."""
|
| 88 |
+
with torch.inference_mode():
|
| 89 |
+
wave = waveform.to(device)
|
| 90 |
+
codes = model.encode_code(input_waveform=wave)
|
| 91 |
+
codes_t = _codes_to_tensor(codes, device=device)
|
| 92 |
+
recon = model.decode_code(codes_t) # (1, 1, T')
|
| 93 |
+
recon_np = recon.squeeze().detach().cpu().numpy().astype(np.float32)
|
| 94 |
+
recon_np = np.clip(recon_np, -1.0, 1.0)
|
| 95 |
+
return recon_np
|
| 96 |
+
|
| 97 |
+
@spaces.GPU(duration=60) # ZeroGPU: reserve GPU only during this function call
|
| 98 |
+
def run(audio_path, max_seconds):
|
| 99 |
+
if audio_path is None:
|
| 100 |
+
raise gr.Error("Please upload an audio file.")
|
| 101 |
+
|
| 102 |
+
_ensure_models()
|
| 103 |
+
waveform, sr = _load_audio(audio_path, max_seconds)
|
| 104 |
+
|
| 105 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 106 |
+
|
| 107 |
+
# Baseline (pretrained)
|
| 108 |
+
base = _model_base.to(device)
|
| 109 |
+
recon_base = _reconstruct(base, waveform, device)
|
| 110 |
+
|
| 111 |
+
# Fine-tuned
|
| 112 |
+
ft = _model_ft.to(device)
|
| 113 |
+
recon_ft = _reconstruct(ft, waveform, device)
|
| 114 |
+
|
| 115 |
+
# Gradio Audio expects (sample_rate, np.ndarray)
|
| 116 |
+
return (sr, recon_base), (sr, recon_ft)
|
| 117 |
+
|
| 118 |
+
# ====== UI ======
|
| 119 |
+
DESCRIPTION = """
|
| 120 |
+
# Anime‑XCodec2 / XCodec2 Reconstruction Demo
|
| 121 |
+
Compare **Baseline (HKUSTAudio/xcodec2)** and **Fine‑tuned (NandemoGHS/Anime‑XCodec2)** reconstructions side by side.
|
| 122 |
+
|
| 123 |
+
- Supported inputs: wav / flac / ogg / mp3
|
| 124 |
+
- Input is automatically converted to **16 kHz** (as required by XCodec2).
|
| 125 |
+
- ZeroGPU ready. If no GPU is available, it falls back to CPU (slower).
|
| 126 |
+
"""
|
| 127 |
+
|
| 128 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="footer {visibility: hidden}") as demo:
|
| 129 |
+
gr.Markdown(DESCRIPTION)
|
| 130 |
+
|
| 131 |
+
with gr.Row():
|
| 132 |
+
with gr.Column(scale=1):
|
| 133 |
+
inp = gr.Audio(
|
| 134 |
+
sources=["upload"],
|
| 135 |
+
type="filepath",
|
| 136 |
+
label="Upload an audio file",
|
| 137 |
+
waveform_options={"show_controls": True}
|
| 138 |
+
)
|
| 139 |
+
max_sec = gr.Slider(
|
| 140 |
+
3, 60, value=MAX_SECONDS_DEFAULT, step=1,
|
| 141 |
+
label="Max length (seconds)",
|
| 142 |
+
info="If the input is longer, only the first N seconds will be processed."
|
| 143 |
+
)
|
| 144 |
+
run_btn = gr.Button("Run", variant="primary")
|
| 145 |
+
gr.Markdown(
|
| 146 |
+
f"**Baseline model**: `{BASE_REPO}` \n"
|
| 147 |
+
f"**Fine‑tuned model**: `{FT_REPO}` \n"
|
| 148 |
+
f"**Inference device**: auto (GPU on ZeroGPU)"
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
with gr.Column(scale=1):
|
| 152 |
+
with gr.Row():
|
| 153 |
+
out_base = gr.Audio(
|
| 154 |
+
label="Baseline reconstruction (HKUSTAudio/xcodec2)",
|
| 155 |
+
show_download_button=True, format="wav"
|
| 156 |
+
)
|
| 157 |
+
out_ft = gr.Audio(
|
| 158 |
+
label="Fine‑tuned reconstruction (NandemoGHS/Anime‑XCodec2)",
|
| 159 |
+
show_download_button=True, format="wav"
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
run_btn.click(run, inputs=[inp, max_sec], outputs=[out_base, out_ft])
|
| 163 |
+
|
| 164 |
+
# In Spaces, explicit launch is optional
|
| 165 |
+
if __name__ == "__main__":
|
| 166 |
+
demo.queue(max_size=8).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.44.0,<6
|
| 2 |
+
xcodec2==0.1.3
|
| 3 |
+
soundfile>=0.12.1
|
| 4 |
+
librosa>=0.10.2.post1
|
| 5 |
+
numpy>=1.23
|