File size: 3,884 Bytes
849ec65
 
 
 
 
 
 
9884bce
 
 
 
 
 
849ec65
 
 
 
 
 
 
 
 
 
 
 
 
 
9884bce
 
 
849ec65
 
9884bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
849ec65
 
 
 
9884bce
849ec65
 
 
 
 
 
 
9884bce
849ec65
 
 
 
08540f7
 
 
 
9884bce
08540f7
 
9884bce
08540f7
 
 
 
 
 
849ec65
 
9884bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
849ec65
 
 
 
9884bce
 
 
 
 
 
 
849ec65
 
 
9884bce
 
 
849ec65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9884bce
849ec65
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import time

# Definir todos los modelos disponibles
MODELS = {
    "yuuki-best": "OpceanAI/Yuuki-best",
    "yuuki-3.7": "OpceanAI/Yuuki-3.7",
    "yuuki-v0.1": "OpceanAI/Yuuki-v0.1"
}

app = FastAPI(
    title="Yuuki API",
    description="Local inference API for Yuuki models",
    version="1.0.0"
)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
)

# Cache de modelos cargados
loaded_models = {}
loaded_tokenizers = {}


def load_model(model_key: str):
    """Lazy load: solo carga el modelo cuando se necesita"""
    if model_key not in loaded_models:
        print(f"Loading {model_key}...")
        model_id = MODELS[model_key]
        
        loaded_tokenizers[model_key] = AutoTokenizer.from_pretrained(model_id)
        loaded_models[model_key] = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float32
        ).to("cpu")
        loaded_models[model_key].eval()
        print(f"{model_key} ready!")
    
    return loaded_models[model_key], loaded_tokenizers[model_key]


class GenerateRequest(BaseModel):
    prompt: str = Field(..., min_length=1, max_length=4000)
    model: str = Field(default="yuuki-best", description="Model to use")
    max_new_tokens: int = Field(default=120, ge=1, le=512)
    temperature: float = Field(default=0.7, ge=0.1, le=2.0)
    top_p: float = Field(default=0.95, ge=0.0, le=1.0)


class GenerateResponse(BaseModel):
    response: str
    model: str
    tokens_generated: int
    time_ms: int


@app.get("/")
def root():
    return {
        "message": "Yuuki Local Inference API",
        "models": list(MODELS.keys()),
        "endpoints": {
            "health": "GET /health",
            "models": "GET /models",
            "generate": "POST /generate",
            "docs": "GET /docs"
        }
    }


@app.get("/health")
def health():
    return {
        "status": "ok",
        "available_models": list(MODELS.keys()),
        "loaded_models": list(loaded_models.keys())
    }


@app.get("/models")
def list_models():
    return {
        "models": [
            {"id": key, "name": value} 
            for key, value in MODELS.items()
        ]
    }


@app.post("/generate", response_model=GenerateResponse)
def generate(req: GenerateRequest):
    # Validar que el modelo existe
    if req.model not in MODELS:
        raise HTTPException(
            status_code=400,
            detail=f"Invalid model. Available: {list(MODELS.keys())}"
        )
    
    try:
        start = time.time()

        # Cargar modelo (lazy load)
        model, tokenizer = load_model(req.model)

        inputs = tokenizer(
            req.prompt,
            return_tensors="pt",
            truncation=True,
            max_length=1024
        )

        input_length = inputs["input_ids"].shape[1]

        with torch.no_grad():
            output = model.generate(
                **inputs,
                max_new_tokens=req.max_new_tokens,
                temperature=req.temperature,
                top_p=req.top_p,
                do_sample=True,
                pad_token_id=tokenizer.eos_token_id,
                repetition_penalty=1.1,
            )

        new_tokens = output[0][input_length:]
        response_text = tokenizer.decode(new_tokens, skip_special_tokens=True)

        elapsed_ms = int((time.time() - start) * 1000)

        return GenerateResponse(
            response=response_text.strip(),
            model=req.model,
            tokens_generated=len(new_tokens),
            time_ms=elapsed_ms
        )

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))