Spaces:
Runtime error
Runtime error
File size: 8,397 Bytes
5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 5cf4958 5e93ca8 8fd8f96 5e93ca8 8fd8f96 5e93ca8 5cf4958 5e93ca8 8fd8f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import os
from huggingface_hub import InferenceClient
import tempfile
from pathlib import Path
from PIL import Image as PILImage
import io
# Initialize the Hugging Face Inference client
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"), # Your HF token must be set in the environment
bill_to="huggingface",
)
# --- Core Functions ---
def text_to_video(prompt, duration=5, aspect_ratio="16:9", resolution="720p"):
"""Generate video from text prompt"""
try:
if not prompt or prompt.strip() == "":
return None, "โ ๏ธ Please enter a text prompt."
# Generate video from text
video = client.text_to_video(
prompt,
model="akhaliq/veo3.1-fast",
)
# Save the video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video)
video_path = tmp_file.name
return video_path, f"โ
Video generated successfully from prompt: '{prompt[:50]}...'"
except Exception as e:
return None, f"โ Error generating video: {str(e)}"
def image_to_video(image, prompt, duration=5, aspect_ratio="16:9", resolution="720p"):
"""Generate video from image and prompt"""
try:
if image is None:
return None, "โ ๏ธ Please upload an image."
if not prompt or prompt.strip() == "":
return None, "โ ๏ธ Please enter a motion description."
# Convert image to bytes
if isinstance(image, PILImage.Image):
buffer = io.BytesIO()
image.save(buffer, format="PNG")
input_image = buffer.getvalue()
else:
pil_image = PILImage.fromarray(image)
buffer = io.BytesIO()
pil_image.save(buffer, format="PNG")
input_image = buffer.getvalue()
# Generate video from image
video = client.image_to_video(
input_image,
prompt=prompt,
model="akhaliq/veo3.1-fast-image-to-video",
)
# Save the video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
tmp_file.write(video)
video_path = tmp_file.name
return video_path, f"โ
Video generated successfully with motion: '{prompt[:50]}...'"
except Exception as e:
return None, f"โ Error generating video: {str(e)}"
def clear_text_tab():
"""Clear text-to-video tab"""
return "", None, ""
def clear_image_tab():
"""Clear image-to-video tab"""
return None, "", None, ""
# --- Custom CSS ---
custom_css = """
.container {
max-width: 1200px;
margin: auto;
}
.status-box {
padding: 10px;
border-radius: 5px;
margin-top: 10px;
}
"""
# --- Gradio App ---
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="AI Video Generator") as demo:
gr.Markdown(
"""
# ๐ฌ AI Video Generator
### Generate stunning videos from text or animate your images with AI
#### Powered by VEO 3.1 Fast Model
"""
)
with gr.Tabs() as tabs:
# Text-to-Video Tab
with gr.Tab("๐ Text to Video"):
gr.Markdown("### Transform your text descriptions into dynamic videos")
with gr.Row():
with gr.Column(scale=1):
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe the video you want to create...",
lines=4,
max_lines=6
)
with gr.Accordion("Advanced Settings", open=False):
text_duration = gr.Slider(1, 10, value=5, step=1, label="Duration (seconds)")
text_aspect_ratio = gr.Dropdown(
["16:9", "9:16", "1:1", "4:3", "21:9"], value="16:9", label="Aspect Ratio"
)
text_resolution = gr.Dropdown(
["480p", "720p", "1080p"], value="720p", label="Resolution"
)
with gr.Row():
text_generate_btn = gr.Button("๐ฌ Generate Video", variant="primary")
text_clear_btn = gr.ClearButton(value="๐๏ธ Clear")
text_status = gr.Textbox(
label="Status", interactive=False, visible=True, elem_classes=["status-box"]
)
with gr.Column(scale=1):
text_video_output = gr.Video(
label="Generated Video", autoplay=True, show_download_button=True, height=400
)
gr.Examples(
examples=[
["A serene beach at sunset with gentle waves"],
["A bustling city street with neon lights at night"],
["A majestic eagle soaring through mountain peaks"],
["An astronaut floating in space near the ISS"],
["Cherry blossoms falling in a Japanese garden"],
],
inputs=text_prompt,
label="Example Prompts",
)
# Image-to-Video Tab
with gr.Tab("๐ผ๏ธ Image to Video"):
gr.Markdown("### Bring your static images to life with motion")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Image", type="pil", height=300)
image_prompt = gr.Textbox(
label="Motion Prompt",
placeholder="Describe how the image should move...",
lines=3,
max_lines=5
)
with gr.Accordion("Advanced Settings", open=False):
image_duration = gr.Slider(1, 10, value=5, step=1, label="Duration (seconds)")
image_aspect_ratio = gr.Dropdown(
["16:9", "9:16", "1:1", "4:3", "21:9"], value="16:9", label="Aspect Ratio"
)
image_resolution = gr.Dropdown(
["480p", "720p", "1080p"], value="720p", label="Resolution"
)
with gr.Row():
image_generate_btn = gr.Button("๐ฌ Animate Image", variant="primary")
image_clear_btn = gr.ClearButton(value="๐๏ธ Clear")
image_status = gr.Textbox(
label="Status", interactive=False, visible=True, elem_classes=["status-box"]
)
with gr.Column(scale=1):
image_video_output = gr.Video(
label="Generated Video", autoplay=True, show_download_button=True, height=400
)
gr.Examples(
examples=[
[None, "The person starts walking forward"],
[None, "The animal begins to run"],
[None, "Camera slowly zooms in while the subject smiles"],
[None, "The flowers sway gently in the breeze"],
[None, "The clouds move across the sky in time-lapse"],
],
inputs=[image_input, image_prompt],
label="Example Motion Prompts",
)
# --- Event handlers ---
text_generate_btn.click(
fn=text_to_video,
inputs=[text_prompt, text_duration, text_aspect_ratio, text_resolution],
outputs=[text_video_output, text_status],
)
text_clear_btn.click(
fn=clear_text_tab,
inputs=[],
outputs=[text_prompt, text_video_output, text_status],
)
image_generate_btn.click(
fn=image_to_video,
inputs=[image_input, image_prompt, image_duration, image_aspect_ratio, image_resolution],
outputs=[image_video_output, image_status],
)
image_clear_btn.click(
fn=clear_image_tab,
inputs=[],
outputs=[image_input, image_prompt, image_video_output, image_status],
)
# Launch the app
if __name__ == "__main__":
demo.launch(show_api=False, share=False, quiet=True)
|