File size: 4,648 Bytes
7f5506e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dafde0
7f5506e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import time
from apscheduler.schedulers.background import BackgroundScheduler
import threading
import globals
from globals import TASKS, LOCAL_CONFIG_FILE
from utils.io import initialize_models_providers_file, save_results, load_results, load_models_providers, get_results_table
from utils.jobs import run_single_job, launch_jobs, update_job_statuses
from typing import List, Optional


def status_monitor() -> None:
    """Background thread to monitor job statuses."""
    while True:
        update_job_statuses()
        time.sleep(240)  # Check every 30 seconds


def daily_checkpoint() -> None:
    """Daily checkpoint - save current state."""
    print("Daily checkpoint - saving current state")
    save_results()


# Create Gradio interface
def create_app() -> gr.Blocks:
    with gr.Blocks(title="Inference Provider Testing Dashboard") as demo:
        gr.Markdown("# Inference Provider Testing Dashboard")
        gr.Markdown("Launch and monitor evaluation jobs for multiple models and providers.")

        output = gr.Textbox(label="Logs and status", interactive=False)

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Initialize Config File")
                init_btn = gr.Button("Fetch and Initialize Models/Providers", variant="secondary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Launch Jobs")
                launch_btn = gr.Button("Launch All Jobs", variant="primary")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Job Results")
                results_table = gr.Dataframe(
                    headers=["Model", "Provider", "Last Run", "Status", "Current Score", "Previous Score", "Latest Job Id"],
                    value=get_results_table(),
                    interactive=False,
                    wrap=True
                )
                refresh_btn = gr.Button("Refresh Results")

        with gr.Row():
            with gr.Column():
                gr.Markdown("## Relaunch Individual Job")

                # Load model-provider combinations
                models_providers = load_models_providers(LOCAL_CONFIG_FILE)
                model_choices = sorted(list(set([mp[0] for mp in models_providers])))

                relaunch_model = gr.Dropdown(
                    label="Model",
                    choices=model_choices,
                    interactive=True
                )
                relaunch_provider = gr.Dropdown(
                    label="Provider",
                    choices=[],
                    interactive=True
                )
                relaunch_btn = gr.Button("Relaunch Job", variant="secondary")

        def update_provider_choices(model: Optional[str]) -> gr.update:
            """Update provider dropdown based on selected model."""
            if not model:
                return gr.update(choices=[])

            # Get providers for the selected model from the config file
            models_providers = load_models_providers(LOCAL_CONFIG_FILE)
            providers = [mp[1] for mp in models_providers if mp[0] == model]

            return gr.update(choices=providers, value=providers[0] if providers else None)

        # Event handlers
        init_btn.click(
            fn=initialize_models_providers_file,
            outputs=output
        )

        launch_btn.click(
            fn=launch_jobs,
            outputs=output
        )

        refresh_btn.click(
            fn=get_results_table,
            outputs=results_table
        )

        # Update provider dropdown when model is selected
        relaunch_model.change(
            fn=update_provider_choices,
            inputs=relaunch_model,
            outputs=relaunch_provider
        )

        relaunch_btn.click(
            fn=run_single_job,
            inputs=[relaunch_model, relaunch_provider],
            outputs=output
        )

    return demo


if __name__ == "__main__":
    # Load previous results
    load_results()
    print("Starting Inference Provider Testing Dashboard")

    # Start status monitor thread
    monitor_thread = threading.Thread(target=status_monitor, daemon=True)
    monitor_thread.start()
    print("Job status monitor started")

    # Start APScheduler for daily checkpoint
    scheduler = BackgroundScheduler()
    scheduler.add_job(daily_checkpoint, 'cron', hour=0, minute=0)  # Run at midnight
    scheduler.start()
    print("Daily checkpoint scheduler started (saves at 00:00)")

    # Create and launch the Gradio interface
    demo = create_app()
    demo.launch(server_name="0.0.0.0", server_port=7860)