File size: 12,285 Bytes
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
e43ceb5
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
3fbd4a0
 
 
 
 
6eac6e1
3fbd4a0
6eac6e1
 
3fbd4a0
6eac6e1
3fbd4a0
 
 
6eac6e1
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fbd4a0
619d3cc
2775a80
619d3cc
 
 
 
 
 
 
 
 
 
 
 
 
6eac6e1
 
3fbd4a0
6eac6e1
 
2775a80
6eac6e1
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
3fbd4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eac6e1
 
 
 
 
 
 
 
 
 
2775a80
3fbd4a0
 
6eac6e1
3fbd4a0
 
 
 
6eac6e1
3fbd4a0
 
 
 
 
 
 
2775a80
3fbd4a0
 
6eac6e1
3fbd4a0
 
 
 
 
 
 
 
 
 
 
6eac6e1
2775a80
 
 
 
 
 
3fbd4a0
6eac6e1
2775a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eac6e1
2775a80
6eac6e1
2775a80
 
6eac6e1
2775a80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eac6e1
2775a80
 
 
 
 
 
 
 
 
 
 
6eac6e1
2775a80
 
 
 
3fbd4a0
 
 
2775a80
 
3fbd4a0
 
2775a80
6eac6e1
3fbd4a0
6eac6e1
380e75f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import soundfile as sf  # Importing soundfile directly

# فقط منابع مورد نیاز برای Timbre را دانلود میکنیم
downloaded_resources = {
    "configs": False,
    "tokenizer_vq8192": False,
    "fmt_Vq8192ToMels": False,
    "vocoder": False
}

def install_espeak():
    """Detect and install espeak-ng dependency"""
    try:
        result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
        if result.returncode != 0:
            print("Installing espeak-ng...")
            subprocess.run(["apt-get", "update"], check=True)
            subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
        else:
            print("espeak-ng is already installed.")
    except Exception as e:
        print(f"Error installing espeak-ng: {e}")

install_espeak()

def patch_langsegment_init():
    try:
        spec = importlib.util.find_spec("LangSegment")
        if spec is None or spec.origin is None: return
        init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
        if not os.path.exists(init_path):
            for site_pkg_path in site.getsitepackages():
                potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
                if os.path.exists(potential_path):
                    init_path = potential_path
                    break
            else: return

        with open(init_path, 'r') as f: lines = f.readlines()
        modified = False
        new_lines = []
        target_line_prefix = "from .LangSegment import"

        for line in lines:
            if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
                mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
                mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',') 
                new_lines.append(mod_line + '\n')
                modified = True
            else:
                new_lines.append(line)

        if modified:
            with open(init_path, 'w') as f: f.writelines(new_lines)
            try:
                import LangSegment
                importlib.reload(LangSegment)
            except: pass

    except Exception as e:
        print(f"Error patching LangSegment: {e}")

patch_langsegment_init()

if not os.path.exists("Amphion"):
    subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
    os.chdir("Amphion")
else:
    if not os.getcwd().endswith("Amphion"):
        os.chdir("Amphion")

if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
    sys.path.append(os.path.dirname(os.path.abspath("Amphion")))

os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)

from models.vc.vevo.vevo_utils import VevoInferencePipeline

# تابع ذخیره سازی اختصاصی
def my_save_audio(waveform, output_path, sample_rate=24000):
    try:
        if isinstance(waveform, torch.Tensor):
            waveform = waveform.detach().cpu()
            if waveform.dim() == 2 and waveform.shape[0] == 1:
                waveform = waveform.squeeze(0)
            waveform = waveform.numpy()
        
        sf.write(output_path, waveform, sample_rate)
        print(f"Audio saved successfully to {output_path}")
    except Exception as e:
        print(f"Failed to save audio with soundfile: {e}")
        raise e

def setup_configs():
    if downloaded_resources["configs"]: return
    config_path = "models/vc/vevo/config"
    os.makedirs(config_path, exist_ok=True)
    config_files = ["Vq8192ToMels.json", "Vocoder.json"]
    
    for file in config_files:
        file_path = f"{config_path}/{file}"
        if not os.path.exists(file_path):
            try:
                file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
                subprocess.run(["cp", file_data, file_path])
            except Exception as e: print(f"Error downloading config {file}: {e}")
    downloaded_resources["configs"] = True

setup_configs()

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")

inference_pipelines = {}

def preload_all_resources():
    print("Preloading Timbre resources...")
    setup_configs()
    
    global downloaded_content_style_tokenizer_path
    global downloaded_fmt_path
    global downloaded_vocoder_path
    
    if not downloaded_resources["tokenizer_vq8192"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
        downloaded_content_style_tokenizer_path = local_dir
        downloaded_resources["tokenizer_vq8192"] = True
    
    if not downloaded_resources["fmt_Vq8192ToMels"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
        downloaded_fmt_path = local_dir
        downloaded_resources["fmt_Vq8192ToMels"] = True
    
    if not downloaded_resources["vocoder"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
        downloaded_vocoder_path = local_dir
        downloaded_resources["vocoder"] = True
    
    print("Timbre resources ready!")

downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None

preload_all_resources()

def get_pipeline():
    if "timbre" in inference_pipelines:
        return inference_pipelines["timbre"]
    
    content_style_tokenizer_ckpt_path = os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192")
    fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
    fmt_ckpt_path = os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels")
    vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
    vocoder_ckpt_path = os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder")
    
    pipeline = VevoInferencePipeline(
        content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
        fmt_cfg_path=fmt_cfg_path,
        fmt_ckpt_path=fmt_ckpt_path,
        vocoder_cfg_path=vocoder_cfg_path,
        vocoder_ckpt_path=vocoder_ckpt_path,
        device=device,
    )
    
    inference_pipelines["timbre"] = pipeline
    return pipeline

@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
    temp_content_path = "wav/temp_content.wav"
    temp_reference_path = "wav/temp_reference.wav"
    output_path = "wav/output_vevotimbre.wav"
    
    if content_wav is None or reference_wav is None:
        raise ValueError("Please upload audio files")
    
    # --- بارگذاری و پردازش صدای اصلی (Content) ---
    if isinstance(content_wav, tuple):
        content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
    else:
        content_sr, content_data = content_wav

    if len(content_data.shape) > 1 and content_data.shape[1] > 1:
        content_data = np.mean(content_data, axis=1)
    
    content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
    if content_sr != 24000:
        content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
        content_sr = 24000
    
    content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95

    # --- بارگذاری و پردازش صدای رفرنس (Reference) ---
    if isinstance(reference_wav, tuple):
        ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
    else:
        ref_sr, ref_data = reference_wav

    if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
        ref_data = np.mean(ref_data, axis=1)

    ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
    if ref_sr != 24000:
        ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
        ref_sr = 24000
    
    ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
    
    # برش زدن صدای رفرنس به 20 ثانیه اول (برای جلوگیری از گیج شدن مدل)
    # صدای رفرنس فقط برای برداشتن "رنگ صدا" استفاده میشه و 20 ثانیه کافیه
    if ref_tensor.shape[1] > 24000 * 20:
        ref_tensor = ref_tensor[:, :24000 * 20]

    # ذخیره موقت صدای رفرنس
    sf.write(temp_reference_path, ref_tensor.squeeze().cpu().numpy(), ref_sr)
    
    print(f"Total Duration: {content_tensor.shape[1]/24000:.2f}s")
    
    # --- تکه تکه کردن صدای اصلی (Chunking Logic) ---
    pipeline = get_pipeline()
    
    CHUNK_DURATION = 15 # ثانیه (اندازه هر تکه)
    CHUNK_SAMPLES = CHUNK_DURATION * 24000
    total_samples = content_tensor.shape[1]
    
    generated_chunks = []
    
    # حلقه برای پردازش تکه تکه
    for i in range(0, total_samples, CHUNK_SAMPLES):
        end = min(i + CHUNK_SAMPLES, total_samples)
        chunk = content_tensor[:, i:end]
        
        print(f"Processing Chunk: {i/24000:.1f}s to {end/24000:.1f}s")
        
        # ذخیره تکه جاری
        sf.write(temp_content_path, chunk.squeeze().cpu().numpy(), 24000)
        
        try:
            # پردازش تکه
            gen_chunk = pipeline.inference_fm(
                src_wav_path=temp_content_path,
                timbre_ref_wav_path=temp_reference_path,
                flow_matching_steps=32,
            )
            
            # بررسی خرابی احتمالی
            if torch.isnan(gen_chunk).any() or torch.isinf(gen_chunk).any():
                print("Warning: NaN in chunk, fixing...")
                gen_chunk = torch.nan_to_num(gen_chunk, nan=0.0, posinf=0.95, neginf=-0.95)
            
            # اضافه کردن به لیست خروجی‌ها (مطمئن میشیم دوبعدی باشه [1, T])
            if gen_chunk.dim() == 1:
                gen_chunk = gen_chunk.unsqueeze(0)
            generated_chunks.append(gen_chunk.cpu())
            
        except Exception as e:
            print(f"Error processing chunk starting at {i}: {e}")
            # در صورت خطا در یک تکه، سکوت جایگزین میکنیم تا کل فایل خراب نشه
            silence = torch.zeros_like(chunk)
            generated_chunks.append(silence)

    # --- چسباندن تکه‌ها به هم ---
    if not generated_chunks:
        raise ValueError("No audio generated")
        
    final_audio = torch.cat(generated_chunks, dim=1)
    
    print(f"Final Audio Duration: {final_audio.shape[1]/24000:.2f}s")
    
    # ذخیره خروجی نهایی
    my_save_audio(final_audio, output_path=output_path)
    return output_path

# رابط کاربری
with gr.Blocks(title="Vevo-Timbre (Long Audio Fix)") as demo:
    gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion (Unlimited Length)")
    gr.Markdown("این نسخه فایل‌های طولانی را به صورت اتوماتیک به تکه‌های ۱۵ ثانیه‌ای تقسیم کرده و پردازش می‌کند تا صدا خراب نشود.")
    
    with gr.Row():
        with gr.Column():
            timbre_content = gr.Audio(label="Source Audio (صدای اصلی - هر چقدر طولانی باشد مشکلی نیست)", type="numpy")
            timbre_reference = gr.Audio(label="Target Timbre (صدای هدف - ۲۰ ثانیه اول استفاده میشود)", type="numpy")
            timbre_button = gr.Button("Generate (ساخت صدا)", variant="primary")
        with gr.Column():
            timbre_output = gr.Audio(label="Result (خروجی نهایی)")
            
    timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)

demo.launch()