File size: 13,325 Bytes
6eac6e1 d7672e1 b78fc58 6eac6e1 501163c 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 d7672e1 6eac6e1 a4df331 428894f a4df331 501163c 97b11e9 a4df331 6eac6e1 3fbd4a0 6eac6e1 2775a80 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 428894f 6eac6e1 2457c1e 6eac6e1 2457c1e 6eac6e1 2457c1e 6eac6e1 3fbd4a0 2457c1e 3fbd4a0 d7672e1 3fbd4a0 6eac6e1 d7672e1 6eac6e1 d7672e1 501163c 2457c1e a6cd2a1 2457c1e a6cd2a1 501163c a6cd2a1 339799c a6cd2a1 2457c1e d7672e1 2457c1e d7672e1 501163c 2457c1e 501163c 2775a80 501163c 9622192 428894f 501163c d7672e1 501163c 339799c d7672e1 501163c de91e11 501163c 339799c 501163c 3a081bb 501163c ef837dd 501163c 428894f f375b6c 428894f 3a081bb 428894f f375b6c 2457c1e 09eb27e 501163c 339799c 501163c ef837dd 501163c 2457c1e 501163c 428894f 501163c 3b10964 501163c d7672e1 6eac6e1 501163c 3fbd4a0 a6cd2a1 3fbd4a0 d7672e1 6eac6e1 3fbd4a0 6eac6e1 380e75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import uuid
import soundfile as sf
# --- تنظیمات و نصب ---
downloaded_resources = {
"configs": False,
"tokenizer_vq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
try:
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Installing espeak-ng...")
subprocess.run(["apt-get", "update"], check=True)
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
except Exception as e:
print(f"Error installing espeak-ng: {e}")
install_espeak()
def patch_langsegment_init():
try:
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None: return
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
with open(init_path, 'r') as f: lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
new_lines.append(mod_line + '\n')
modified = True
else:
new_lines.append(line)
if modified:
with open(init_path, 'w') as f: f.writelines(new_lines)
try:
import LangSegment
importlib.reload(LangSegment)
except: pass
except: pass
patch_langsegment_init()
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
try:
if isinstance(waveform, torch.Tensor):
waveform = waveform.detach().cpu()
if waveform.dim() == 2 and waveform.shape[0] == 1:
waveform = waveform.squeeze(0)
waveform = waveform.numpy()
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
except Exception as e:
print(f"Save error: {e}")
def setup_configs():
if downloaded_resources["configs"]: return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
subprocess.run(["cp", file_data, file_path])
except Exception as e: print(f"Error downloading config {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
inference_pipelines = {}
def preload_all_resources():
setup_configs()
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
if not downloaded_resources["tokenizer_vq8192"]:
downloaded_content_style_tokenizer_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
downloaded_resources["tokenizer_vq8192"] = True
if not downloaded_resources["fmt_Vq8192ToMels"]:
downloaded_fmt_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
downloaded_resources["fmt_Vq8192ToMels"] = True
if not downloaded_resources["vocoder"]:
downloaded_vocoder_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
downloaded_resources["vocoder"] = True
downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
preload_all_resources()
def get_pipeline():
if "timbre" in inference_pipelines: return inference_pipelines["timbre"]
pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
device=device,
)
inference_pipelines["timbre"] = pipeline
return pipeline
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
session_id = str(uuid.uuid4())[:8]
temp_content_path = f"wav/c_{session_id}.wav"
temp_reference_path = f"wav/r_{session_id}.wav"
output_path = f"wav/out_{session_id}.wav"
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
try:
SR = 24000
# --- 1. پردازش ورودی ---
if isinstance(content_wav, tuple):
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
else:
content_sr, content_data = content_wav
if len(content_data.shape) > 1: content_data = np.mean(content_data, axis=1)
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
if content_sr != SR:
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, SR)
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
content_full_np = content_tensor.squeeze().numpy()
# --- 2. پردازش رفرنس ---
if isinstance(reference_wav, tuple):
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
else:
ref_sr, ref_data = reference_wav
if len(ref_data.shape) > 1: ref_data = np.mean(ref_data, axis=1)
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
if ref_sr != SR:
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, SR)
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
if ref_tensor.shape[1] > SR * 20: ref_tensor = ref_tensor[:, :SR * 20]
save_audio_pcm16(ref_tensor, temp_reference_path, SR)
# --- 3. استراتژی جوش دادن Equal Power (500ms) ---
pipeline = get_pipeline()
# تنظیمات حیاتی
CHUNK_DURATION = 10.0 # طول خالص هر تکه
CROSSFADE_SEC = 0.5 # طول همپوشانی (نیم ثانیه برای حذف لرزش)
chunk_samples = int(CHUNK_DURATION * SR)
crossfade_samples = int(CROSSFADE_SEC * SR)
total_samples = len(content_full_np)
final_output = np.array([], dtype=np.float32)
# ایجاد منحنی فید Equal Power (سینوسی)
# این منحنی باعث میشود حجم صدا در محل اتصال ثابت بماند
fade_out_curve = np.cos(np.linspace(0, np.pi/2, crossfade_samples))
fade_in_curve = np.sin(np.linspace(0, np.pi/2, crossfade_samples))
# شروع حلقه پردازش
# ما در هر مرحله به اندازه chunk_samples جلو میرویم
# اما برای ورودی مدل، crossfade_samples را از قبل هم برمیداریم
cursor = 0
print(f"[{session_id}] Processing with 500ms Equal-Power Crossfade...")
while cursor < total_samples:
# تعیین بازه ورودی برای مدل
# اگر اولین تکه نیست، باید کمی از عقبتر شروع کنیم (برای همپوشانی)
is_first_chunk = (cursor == 0)
start_idx = cursor
if not is_first_chunk:
start_idx -= crossfade_samples # عقبگرد برای همپوشانی
end_idx = min(total_samples, cursor + chunk_samples)
# اگر به انتهای فایل رسیدیم و تکه خیلی کوچک است
if start_idx >= end_idx:
break
current_chunk_input = content_full_np[start_idx:end_idx]
# ذخیره و اجرا
save_audio_pcm16(torch.FloatTensor(current_chunk_input).unsqueeze(0), temp_content_path, SR)
try:
gen = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=64,
)
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
gen_np = gen.detach().cpu().squeeze().numpy()
# --- عملیات میکس هوشمند ---
if is_first_chunk:
# تکه اول: مستقیماً اضافه کن
final_output = np.concatenate([final_output, gen_np])
else:
# تکههای بعدی:
# 1. بخش همپوشانی (Crossfade Area)
# 2. بخش جدید (New Area)
if len(gen_np) < crossfade_samples:
# اگر خروجی خیلی کوتاه بود (نادر)، فقط بچسبان
final_output = np.concatenate([final_output, gen_np])
else:
# جدا کردن بخش میکس و بخش جدید از خروجی فعلی
overlap_part_new = gen_np[:crossfade_samples]
rest_part_new = gen_np[crossfade_samples:]
# جدا کردن بخش میکس از انتهای خروجی قبلی
if len(final_output) >= crossfade_samples:
overlap_part_old = final_output[-crossfade_samples:]
# فرمول Equal Power Crossfade
# Old * Cos + New * Sin
blended = (overlap_part_old * fade_out_curve) + (overlap_part_new * fade_in_curve)
# جایگزینی انتهای آرایه اصلی با بخش میکس شده
final_output[-crossfade_samples:] = blended
# اضافه کردن باقیمانده
final_output = np.concatenate([final_output, rest_part_new])
else:
# اگر بافر قبلی خیلی کوتاه بود (نباید پیش بیاید)
final_output = np.concatenate([final_output, gen_np])
except Exception as e:
print(f"Error at {cursor}: {e}")
# در صورت خطا سکوت اضافه کن
missing = end_idx - start_idx
final_output = np.concatenate([final_output, np.zeros(missing)])
# حرکت به جلو
cursor += chunk_samples
save_audio_pcm16(final_output, output_path, SR)
return output_path
finally:
if os.path.exists(temp_content_path): os.remove(temp_content_path)
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
with gr.Blocks(title="Vevo-Timbre (Pro Stitch)") as demo:
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion")
gr.Markdown("Professional Stitching: 500ms Equal-Power Crossfade (No Jitter, No Ghosting).")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
timbre_button = gr.Button("Generate", variant="primary")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
demo.launch() |