File size: 9,463 Bytes
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
d7672e1
b78fc58
6eac6e1
a4df331
6eac6e1
 
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
3fbd4a0
 
 
 
 
6eac6e1
3fbd4a0
6eac6e1
 
3fbd4a0
6eac6e1
3fbd4a0
 
 
d7672e1
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4df331
 
b78fc58
a4df331
 
 
 
 
 
 
 
 
 
 
6eac6e1
 
3fbd4a0
6eac6e1
 
2775a80
6eac6e1
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
d7672e1
6eac6e1
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
d7672e1
6eac6e1
 
 
 
 
 
 
3fbd4a0
 
 
 
 
d7672e1
 
 
 
 
3fbd4a0
 
 
 
 
6eac6e1
 
 
d7672e1
 
 
 
6eac6e1
 
 
 
d7672e1
 
 
 
 
3fbd4a0
d7672e1
 
 
 
 
 
 
 
 
3fbd4a0
d7672e1
 
 
 
3fbd4a0
d7672e1
 
3fbd4a0
d7672e1
 
 
 
6eac6e1
d7672e1
6eac6e1
b78fc58
a4df331
 
6eac6e1
b78fc58
2775a80
d7672e1
 
 
 
 
 
 
 
 
 
 
 
a4df331
d7672e1
 
 
 
 
6eac6e1
a4df331
d7672e1
3fbd4a0
 
 
d7672e1
 
 
3fbd4a0
d7672e1
6eac6e1
3fbd4a0
6eac6e1
380e75f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import uuid
import soundfile as sf

# فقط منابع ضروری
downloaded_resources = {
    "configs": False,
    "tokenizer_vq8192": False,
    "fmt_Vq8192ToMels": False,
    "vocoder": False
}

def install_espeak():
    try:
        result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
        if result.returncode != 0:
            print("Installing espeak-ng...")
            subprocess.run(["apt-get", "update"], check=True)
            subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
    except Exception as e:
        print(f"Error installing espeak-ng: {e}")

install_espeak()

def patch_langsegment_init():
    try:
        spec = importlib.util.find_spec("LangSegment")
        if spec is None or spec.origin is None: return
        init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
        if not os.path.exists(init_path):
            for site_pkg_path in site.getsitepackages():
                potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
                if os.path.exists(potential_path):
                    init_path = potential_path
                    break
            else: return

        with open(init_path, 'r') as f: lines = f.readlines()
        modified = False
        new_lines = []
        target_line_prefix = "from .LangSegment import"

        for line in lines:
            if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
                mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
                mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',') 
                new_lines.append(mod_line + '\n')
                modified = True
            else:
                new_lines.append(line)

        if modified:
            with open(init_path, 'w') as f: f.writelines(new_lines)
            try:
                import LangSegment
                importlib.reload(LangSegment)
            except: pass
    except: pass

patch_langsegment_init()

if not os.path.exists("Amphion"):
    subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
    os.chdir("Amphion")
else:
    if not os.getcwd().endswith("Amphion"):
        os.chdir("Amphion")

if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
    sys.path.append(os.path.dirname(os.path.abspath("Amphion")))

os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)

from models.vc.vevo.vevo_utils import VevoInferencePipeline

# تابع ذخیره سازی امن
def my_save_audio(waveform, output_path, sample_rate=24000):
    try:
        if isinstance(waveform, torch.Tensor):
            waveform = waveform.detach().cpu()
            if waveform.dim() == 2 and waveform.shape[0] == 1:
                waveform = waveform.squeeze(0)
            waveform = waveform.numpy()
        sf.write(output_path, waveform, sample_rate)
    except Exception as e:
        print(f"Save error: {e}")
        raise e

def setup_configs():
    if downloaded_resources["configs"]: return
    config_path = "models/vc/vevo/config"
    os.makedirs(config_path, exist_ok=True)
    config_files = ["Vq8192ToMels.json", "Vocoder.json"]
    
    for file in config_files:
        file_path = f"{config_path}/{file}"
        if not os.path.exists(file_path):
            try:
                file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
                subprocess.run(["cp", file_data, file_path])
            except Exception as e: print(f"Error downloading config {file}: {e}")
    downloaded_resources["configs"] = True

setup_configs()

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")

inference_pipelines = {}

def preload_all_resources():
    print("Preloading resources...")
    setup_configs()
    
    global downloaded_content_style_tokenizer_path
    global downloaded_fmt_path
    global downloaded_vocoder_path
    
    if not downloaded_resources["tokenizer_vq8192"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
        downloaded_content_style_tokenizer_path = local_dir
        downloaded_resources["tokenizer_vq8192"] = True
    
    if not downloaded_resources["fmt_Vq8192ToMels"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
        downloaded_fmt_path = local_dir
        downloaded_resources["fmt_Vq8192ToMels"] = True
    
    if not downloaded_resources["vocoder"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
        downloaded_vocoder_path = local_dir
        downloaded_resources["vocoder"] = True
    print("Resources ready.")

downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None

preload_all_resources()

def get_pipeline():
    if "timbre" in inference_pipelines:
        return inference_pipelines["timbre"]
    
    pipeline = VevoInferencePipeline(
        content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
        fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
        fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
        vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
        vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
        device=device,
    )
    
    inference_pipelines["timbre"] = pipeline
    return pipeline

@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
    session_id = str(uuid.uuid4())[:8]
    temp_content_path = f"wav/c_{session_id}.wav"
    temp_reference_path = f"wav/r_{session_id}.wav"
    output_path = f"wav/out_{session_id}.wav"
    
    if content_wav is None or reference_wav is None:
        raise ValueError("Please upload audio files")
    
    try:
        if isinstance(content_wav, tuple):
            content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
        else:
            content_sr, content_data = content_wav

        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        if content_sr != 24000:
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95

        if isinstance(reference_wav, tuple):
            ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
        else:
            ref_sr, ref_data = reference_wav

        if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
            ref_data = np.mean(ref_data, axis=1)

        ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
        if ref_sr != 24000:
            ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
            ref_sr = 24000
        
        ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
        
        # استفاده از soundfile برای ذخیره موقت
        sf.write(temp_content_path, content_tensor.squeeze().cpu().numpy(), content_sr)
        sf.write(temp_reference_path, ref_tensor.squeeze().cpu().numpy(), ref_sr)
        
        print(f"[{session_id}] Processing Audio...")
        
        pipeline = get_pipeline()
        
        gen_audio = pipeline.inference_fm(
            src_wav_path=temp_content_path,
            timbre_ref_wav_path=temp_reference_path,
            flow_matching_steps=32,
        )
        
        if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
            print("Warning: NaN fixed")
            gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
        
        my_save_audio(gen_audio, output_path=output_path)
        return output_path

    finally:
        if os.path.exists(temp_content_path): os.remove(temp_content_path)
        if os.path.exists(temp_reference_path): os.remove(temp_reference_path)

with gr.Blocks(title="Vevo-Timbre (Secure)") as demo:
    gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion")
    
    with gr.Row():
        with gr.Column():
            timbre_content = gr.Audio(label="Source Audio", type="numpy")
            timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
            timbre_button = gr.Button("Generate", variant="primary")
        with gr.Column():
            timbre_output = gr.Audio(label="Result")
            
    timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)

demo.launch()