File size: 14,948 Bytes
6eac6e1 d7672e1 b78fc58 d081a94 6eac6e1 d081a94 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 d7672e1 6eac6e1 a4df331 428894f a4df331 501163c 97b11e9 a4df331 6eac6e1 3fbd4a0 6eac6e1 2775a80 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 428894f 6eac6e1 2457c1e 6eac6e1 2457c1e 6eac6e1 2457c1e 6eac6e1 3fbd4a0 2457c1e 3fbd4a0 d7672e1 3fbd4a0 6eac6e1 d081a94 6eac6e1 d7672e1 6eac6e1 d7672e1 501163c d081a94 a6cd2a1 2457c1e a6cd2a1 501163c a6cd2a1 339799c a6cd2a1 d081a94 d7672e1 2457c1e d7672e1 501163c 2457c1e 501163c 2775a80 9622192 428894f d081a94 d7672e1 9454331 d081a94 501163c d081a94 3a081bb d081a94 501163c 9454331 428894f f375b6c 428894f bb4972a 428894f f375b6c 2457c1e 09eb27e d081a94 339799c d081a94 9454331 d081a94 501163c d081a94 9454331 d081a94 501163c d081a94 428894f d081a94 3b10964 9454331 d7672e1 6eac6e1 d081a94 501163c d081a94 3fbd4a0 a6cd2a1 3fbd4a0 d7672e1 6eac6e1 3fbd4a0 6eac6e1 380e75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import uuid
import soundfile as sf
import spaces
import librosa
# --- 1. نصب و راهاندازی ---
downloaded_resources = {
"configs": False,
"tokenizer_vq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
try:
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Installing espeak-ng...")
subprocess.run(["apt-get", "update"], check=True)
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
except Exception as e:
print(f"Error installing espeak-ng: {e}")
install_espeak()
def patch_langsegment_init():
try:
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None: return
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
with open(init_path, 'r') as f: lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
new_lines.append(mod_line + '\n')
modified = True
else:
new_lines.append(line)
if modified:
with open(init_path, 'w') as f: f.writelines(new_lines)
try:
import LangSegment
importlib.reload(LangSegment)
except: pass
except: pass
patch_langsegment_init()
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
try:
if isinstance(waveform, torch.Tensor):
waveform = waveform.detach().cpu()
if waveform.dim() == 2 and waveform.shape[0] == 1:
waveform = waveform.squeeze(0)
waveform = waveform.numpy()
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
except Exception as e:
print(f"Save error: {e}")
def setup_configs():
if downloaded_resources["configs"]: return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
subprocess.run(["cp", file_data, file_path])
except Exception as e: print(f"Error downloading config {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
inference_pipelines = {}
def preload_all_resources():
setup_configs()
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
if not downloaded_resources["tokenizer_vq8192"]:
downloaded_content_style_tokenizer_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
downloaded_resources["tokenizer_vq8192"] = True
if not downloaded_resources["fmt_Vq8192ToMels"]:
downloaded_fmt_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
downloaded_resources["fmt_Vq8192ToMels"] = True
if not downloaded_resources["vocoder"]:
downloaded_vocoder_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
downloaded_resources["vocoder"] = True
downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
preload_all_resources()
def get_pipeline():
if "timbre" in inference_pipelines: return inference_pipelines["timbre"]
pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
device=device,
)
inference_pipelines["timbre"] = pipeline
return pipeline
# --- 2. الگوریتم برش فوق هوشمند ---
def find_advanced_split_points(audio_np, sr):
"""
پیدا کردن نقاط برش با استراتژی فالبک (Fallback Strategy):
۱. تلاش برای پیدا کردن سکوت در بازه ۸ تا ۱۲ ثانیه.
۲. اگر نشد، تلاش در بازه وسیعتر ۶ تا ۱۴ ثانیه.
۳. انتخاب نقطه با کمترین انرژی (حتی اگر سکوت نباشد).
۴. تنظیم دقیق روی نزدیکترین Zero-Crossing.
"""
total_samples = len(audio_np)
# تنظیمات بازه جستجو
MIN_PREFERRED = 8.0
MAX_PREFERRED = 12.0
MIN_HARD = 6.0
MAX_HARD = 15.0
split_points = [0]
current_pos = 0
hop_length = 512
frame_length = 1024
while current_pos < total_samples:
# استراتژی ۱: بازه ایدهآل
start_search = current_pos + int(MIN_PREFERRED * sr)
end_search = current_pos + int(MAX_PREFERRED * sr)
# اگر به انتهای فایل نزدیکیم
if start_search >= total_samples:
split_points.append(total_samples)
break
end_search = min(end_search, total_samples)
# استراتژی ۲: اگر بازه ایدهآل خیلی کوتاه است (ته فایل)، گسترش بده
if end_search - start_search < sr:
# استفاده از بازه سخت (وسیع)
start_search = current_pos + int(MIN_HARD * sr)
end_search = current_pos + int(MAX_HARD * sr)
start_search = min(start_search, total_samples)
end_search = min(end_search, total_samples)
# برش منطقه جستجو
region = audio_np[start_search:end_search]
if len(region) == 0:
split_points.append(total_samples)
break
# محاسبه انرژی
rms = librosa.feature.rms(y=region, frame_length=frame_length, hop_length=hop_length)[0]
# پیدا کردن کمانرژیترین نقطه (Local Minimum)
min_idx = np.argmin(rms)
local_cut_sample = min_idx * hop_length
# --- تکنیک Zero Crossing ---
# نقطه برش تقریبی را پیدا کردیم. حالا باید دقیقاً روی محور صفر برش دهیم
# تا صدای "کلیک" ایجاد نشود.
cut_absolute_approx = start_search + local_cut_sample
# جستجو در اطراف نقطه تقریبی (±500 نمونه) برای پیدا کردن صفر
search_radius = 500
zc_start = max(0, cut_absolute_approx - search_radius)
zc_end = min(total_samples, cut_absolute_approx + search_radius)
zc_region = audio_np[zc_start:zc_end]
# پیدا کردن نزدیکترین عبور از صفر
# (جایی که علامت عدد تغییر میکند)
zero_crossings = np.where(np.diff(np.signbit(zc_region)))[0]
if len(zero_crossings) > 0:
# نزدیکترین صفر به وسط بازه جستجو
closest_zc = zero_crossings[np.argmin(np.abs(zero_crossings - search_radius))]
best_cut_absolute = zc_start + closest_zc
else:
# اگر صفر پیدا نشد (خیلی بعید)، همان نقطه کمانرژی را بگیر
best_cut_absolute = cut_absolute_approx
split_points.append(best_cut_absolute)
current_pos = best_cut_absolute
return split_points
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
session_id = str(uuid.uuid4())[:8]
temp_content_path = f"wav/c_{session_id}.wav"
temp_reference_path = f"wav/r_{session_id}.wav"
output_path = f"wav/out_{session_id}.wav"
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
try:
SR = 24000
# --- ورودی ---
if isinstance(content_wav, tuple):
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
else:
content_sr, content_data = content_wav
if len(content_data.shape) > 1: content_data = np.mean(content_data, axis=1)
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
if content_sr != SR:
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, SR)
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
content_full_np = content_tensor.squeeze().numpy()
# --- رفرنس ---
if isinstance(reference_wav, tuple):
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
else:
ref_sr, ref_data = reference_wav
if len(ref_data.shape) > 1: ref_data = np.mean(ref_data, axis=1)
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
if ref_sr != SR:
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, SR)
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
if ref_tensor.shape[1] > SR * 20: ref_tensor = ref_tensor[:, :SR * 20]
save_audio_pcm16(ref_tensor, temp_reference_path, SR)
pipeline = get_pipeline()
# --- تقسیمبندی پیشرفته ---
print(f"[{session_id}] Finding best energy split points (Zero-Crossing)...")
split_points = find_advanced_split_points(content_full_np, SR)
print(f"[{session_id}] Split into {len(split_points)-1} chunks.")
final_output = []
PADDING_SAMPLES = int(2.5 * SR) # کمی پدینگ بیشتر برای اطمینان
for i in range(len(split_points) - 1):
start = split_points[i]
end = split_points[i+1]
read_start = max(0, start - PADDING_SAMPLES)
read_end = end
chunk_input = content_full_np[read_start:read_end]
save_audio_pcm16(torch.FloatTensor(chunk_input).unsqueeze(0), temp_content_path, SR)
try:
gen = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=32,
)
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
gen_np = gen.detach().cpu().squeeze().numpy()
trim_amount = start - read_start
if len(gen_np) > trim_amount:
valid_audio = gen_np[trim_amount:]
# اتصال
if len(final_output) > 0:
# اگر برش روی سکوت نبوده (اجباری)، باید کمی بیشتر کراسفید کنیم
# تا تغییر ناگهانی لحن مخفی شود.
fade_len = int(0.03 * SR) # 30ms standard
if len(final_output[-1]) > fade_len and len(valid_audio) > fade_len:
fade_out = np.linspace(1, 0, fade_len)
fade_in = np.linspace(0, 1, fade_len)
prev_tail = final_output[-1][-fade_len:]
curr_head = valid_audio[:fade_len]
mixed = (prev_tail * fade_out) + (curr_head * fade_in)
final_output[-1][-fade_len:] = mixed
valid_audio = valid_audio[fade_len:]
final_output.append(valid_audio)
except Exception as e:
print(f"Error segment {i}: {e}")
# پر کردن جای خالی با سکوت برای به هم نریختن تایم
final_output.append(np.zeros(end - start))
if len(final_output) > 0:
full_audio = np.concatenate(final_output)
else:
full_audio = np.zeros(SR)
save_audio_pcm16(full_audio, output_path, SR)
return output_path
finally:
if os.path.exists(temp_content_path): os.remove(temp_content_path)
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
with gr.Blocks(title="Vevo-Timbre (Pro Logic)") as demo:
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion")
gr.Markdown("Robust Splitting: Uses Minimum Energy + Zero Crossing detection to handle fast speech without glitches.")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
timbre_button = gr.Button("Generate", variant="primary")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
demo.launch() |