Sada / app.py
Opera8's picture
Update app.py
2457c1e verified
raw
history blame
12.3 kB
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import uuid
import soundfile as sf
# اضافه شدن کتابخانه PyDub
from pydub import AudioSegment
import io
# --- نصب و پچ کردن ---
downloaded_resources = {
"configs": False,
"tokenizer_vq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
try:
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Installing espeak-ng...")
subprocess.run(["apt-get", "update"], check=True)
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
except Exception as e:
print(f"Error installing espeak-ng: {e}")
install_espeak()
def patch_langsegment_init():
try:
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None: return
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
with open(init_path, 'r') as f: lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
new_lines.append(mod_line + '\n')
modified = True
else:
new_lines.append(line)
if modified:
with open(init_path, 'w') as f: f.writelines(new_lines)
try:
import LangSegment
importlib.reload(LangSegment)
except: pass
except: pass
patch_langsegment_init()
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline
# --- توابع کمکی جدید برای PyDub ---
def numpy_to_audiosegment(audio_arr, sample_rate=24000):
"""تبدیل آرایه نامپای (Float32) به آبجکت AudioSegment"""
# تبدیل به PCM 16-bit
audio_int16 = (audio_arr * 32767).astype(np.int16)
# ایجاد فایل در حافظه
byte_io = io.BytesIO()
sf.write(byte_io, audio_int16, sample_rate, format='WAV', subtype='PCM_16')
byte_io.seek(0)
return AudioSegment.from_wav(byte_io)
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
# این تابع فقط برای ذخیره فایل‌های موقت ورودی مدل است
try:
if isinstance(waveform, torch.Tensor):
waveform = waveform.detach().cpu().squeeze().numpy()
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
except Exception as e:
print(f"Save error: {e}")
def setup_configs():
if downloaded_resources["configs"]: return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
subprocess.run(["cp", file_data, file_path])
except Exception as e: print(f"Error downloading config {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
inference_pipelines = {}
def preload_all_resources():
print("Preloading resources...")
setup_configs()
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
if not downloaded_resources["tokenizer_vq8192"]:
downloaded_content_style_tokenizer_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
downloaded_resources["tokenizer_vq8192"] = True
if not downloaded_resources["fmt_Vq8192ToMels"]:
downloaded_fmt_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
downloaded_resources["fmt_Vq8192ToMels"] = True
if not downloaded_resources["vocoder"]:
downloaded_vocoder_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
downloaded_resources["vocoder"] = True
print("Resources ready.")
downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
preload_all_resources()
def get_pipeline():
if "timbre" in inference_pipelines: return inference_pipelines["timbre"]
pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
device=device,
)
inference_pipelines["timbre"] = pipeline
return pipeline
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
session_id = str(uuid.uuid4())[:8]
temp_content_path = f"wav/c_{session_id}.wav"
temp_reference_path = f"wav/r_{session_id}.wav"
output_path = f"wav/out_{session_id}.wav"
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
try:
# --- 1. پردازش ورودی ---
if isinstance(content_wav, tuple):
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
else:
content_sr, content_data = content_wav
if len(content_data.shape) > 1: content_data = np.mean(content_data, axis=1)
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
if content_sr != 24000:
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
content_full_np = content_tensor.squeeze().numpy()
# --- 2. پردازش رفرنس ---
if isinstance(reference_wav, tuple):
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
else:
ref_sr, ref_data = reference_wav
if len(ref_data.shape) > 1: ref_data = np.mean(ref_data, axis=1)
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
if ref_sr != 24000:
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
if ref_tensor.shape[1] > 24000 * 20: ref_tensor = ref_tensor[:, :24000 * 20]
save_audio_pcm16(ref_tensor, temp_reference_path, 24000)
# --- 3. منطق پردازش با استفاده از PyDub ---
pipeline = get_pipeline()
SR = 24000
NEW_CHUNK_SEC = 10.0
CONTEXT_SEC = 3.0
new_chunk_samples = int(NEW_CHUNK_SEC * SR)
context_samples = int(CONTEXT_SEC * SR)
total_samples = len(content_full_np)
# ایجاد یک AudioSegment خالی برای جمع‌آوری خروجی نهایی
final_audio_segment = AudioSegment.empty()
current_cursor = 0
print(f"[{session_id}] Processing with PyDub stitching...")
while current_cursor < total_samples:
start_slice = max(0, current_cursor - context_samples)
end_slice = min(total_samples, current_cursor + new_chunk_samples)
if start_slice >= end_slice: break
chunk_np = content_full_np[start_slice:end_slice]
save_audio_pcm16(torch.FloatTensor(chunk_np).unsqueeze(0), temp_content_path, SR)
try:
gen = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=64,
)
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
gen_np = gen.detach().cpu().squeeze().numpy()
# محاسبه مقدار برشی (حذف کانتکست تکراری)
trim_samples = current_cursor - start_slice
if len(gen_np) > trim_samples:
valid_part_np = gen_np[trim_samples:]
# تبدیل به فرمت PyDub
new_segment = numpy_to_audiosegment(valid_part_np, SR)
# اتصال:
# اگر اولین تکه نیست، یک فید (Crossfade) بسیار کوتاه (5 میلی ثانیه)
# اعمال می‌کنیم تا صدای "تیک" حذف شود.
if len(final_audio_segment) > 0:
# تکنیک: یک فید بسیار ریز (Crossfade 5ms)
# نکته: PyDub برای کراس‌فید نیاز به همپوشانی دارد، اما چون ما کانتکست را دقیق بریدیم،
# اینجا از append ساده استفاده می‌کنیم و فقط لبه‌ها را نرم می‌کنیم.
# نرم کردن ابتدای تکه جدید (Fade In 5ms)
new_segment = new_segment.fade_in(5)
# نرم کردن انتهای تکه قبلی (Fade Out 5ms) - (قبلاً انجام شده یا الان انجام میدیم)
# در اینجا فقط چسباندن (Append) با فید این کافیست.
final_audio_segment += new_segment
else:
final_audio_segment += new_segment
current_cursor = end_slice
except Exception as e:
print(f"Error: {e}")
current_cursor = end_slice # Skip on error
# ذخیره خروجی نهایی با PyDub
final_audio_segment.export(output_path, format="wav")
return output_path
finally:
if os.path.exists(temp_content_path): os.remove(temp_content_path)
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
with gr.Blocks(title="Vevo-Timbre (PyDub)") as demo:
gr.Markdown("## Vevo-Timbre: Voice Conversion")
gr.Markdown("Seamless stitching powered by PyDub library.")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
timbre_button = gr.Button("Generate", variant="primary")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
demo.launch()