Sada / app.py
Opera8's picture
Update app.py
d081a94 verified
raw
history blame
14.9 kB
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import uuid
import soundfile as sf
import spaces
import librosa
# --- 1. نصب و راه‌اندازی ---
downloaded_resources = {
"configs": False,
"tokenizer_vq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
try:
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Installing espeak-ng...")
subprocess.run(["apt-get", "update"], check=True)
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
except Exception as e:
print(f"Error installing espeak-ng: {e}")
install_espeak()
def patch_langsegment_init():
try:
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None: return
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
with open(init_path, 'r') as f: lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
new_lines.append(mod_line + '\n')
modified = True
else:
new_lines.append(line)
if modified:
with open(init_path, 'w') as f: f.writelines(new_lines)
try:
import LangSegment
importlib.reload(LangSegment)
except: pass
except: pass
patch_langsegment_init()
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
try:
if isinstance(waveform, torch.Tensor):
waveform = waveform.detach().cpu()
if waveform.dim() == 2 and waveform.shape[0] == 1:
waveform = waveform.squeeze(0)
waveform = waveform.numpy()
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
except Exception as e:
print(f"Save error: {e}")
def setup_configs():
if downloaded_resources["configs"]: return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
subprocess.run(["cp", file_data, file_path])
except Exception as e: print(f"Error downloading config {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
inference_pipelines = {}
def preload_all_resources():
setup_configs()
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
if not downloaded_resources["tokenizer_vq8192"]:
downloaded_content_style_tokenizer_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
downloaded_resources["tokenizer_vq8192"] = True
if not downloaded_resources["fmt_Vq8192ToMels"]:
downloaded_fmt_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
downloaded_resources["fmt_Vq8192ToMels"] = True
if not downloaded_resources["vocoder"]:
downloaded_vocoder_path = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
downloaded_resources["vocoder"] = True
downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
preload_all_resources()
def get_pipeline():
if "timbre" in inference_pipelines: return inference_pipelines["timbre"]
pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
device=device,
)
inference_pipelines["timbre"] = pipeline
return pipeline
# --- 2. الگوریتم برش فوق هوشمند ---
def find_advanced_split_points(audio_np, sr):
"""
پیدا کردن نقاط برش با استراتژی فال‌بک (Fallback Strategy):
۱. تلاش برای پیدا کردن سکوت در بازه ۸ تا ۱۲ ثانیه.
۲. اگر نشد، تلاش در بازه وسیع‌تر ۶ تا ۱۴ ثانیه.
۳. انتخاب نقطه با کمترین انرژی (حتی اگر سکوت نباشد).
۴. تنظیم دقیق روی نزدیک‌ترین Zero-Crossing.
"""
total_samples = len(audio_np)
# تنظیمات بازه جستجو
MIN_PREFERRED = 8.0
MAX_PREFERRED = 12.0
MIN_HARD = 6.0
MAX_HARD = 15.0
split_points = [0]
current_pos = 0
hop_length = 512
frame_length = 1024
while current_pos < total_samples:
# استراتژی ۱: بازه ایده‌آل
start_search = current_pos + int(MIN_PREFERRED * sr)
end_search = current_pos + int(MAX_PREFERRED * sr)
# اگر به انتهای فایل نزدیکیم
if start_search >= total_samples:
split_points.append(total_samples)
break
end_search = min(end_search, total_samples)
# استراتژی ۲: اگر بازه ایده‌آل خیلی کوتاه است (ته فایل)، گسترش بده
if end_search - start_search < sr:
# استفاده از بازه سخت (وسیع)
start_search = current_pos + int(MIN_HARD * sr)
end_search = current_pos + int(MAX_HARD * sr)
start_search = min(start_search, total_samples)
end_search = min(end_search, total_samples)
# برش منطقه جستجو
region = audio_np[start_search:end_search]
if len(region) == 0:
split_points.append(total_samples)
break
# محاسبه انرژی
rms = librosa.feature.rms(y=region, frame_length=frame_length, hop_length=hop_length)[0]
# پیدا کردن کم‌انرژی‌ترین نقطه (Local Minimum)
min_idx = np.argmin(rms)
local_cut_sample = min_idx * hop_length
# --- تکنیک Zero Crossing ---
# نقطه برش تقریبی را پیدا کردیم. حالا باید دقیقاً روی محور صفر برش دهیم
# تا صدای "کلیک" ایجاد نشود.
cut_absolute_approx = start_search + local_cut_sample
# جستجو در اطراف نقطه تقریبی (±500 نمونه) برای پیدا کردن صفر
search_radius = 500
zc_start = max(0, cut_absolute_approx - search_radius)
zc_end = min(total_samples, cut_absolute_approx + search_radius)
zc_region = audio_np[zc_start:zc_end]
# پیدا کردن نزدیک‌ترین عبور از صفر
# (جایی که علامت عدد تغییر می‌کند)
zero_crossings = np.where(np.diff(np.signbit(zc_region)))[0]
if len(zero_crossings) > 0:
# نزدیک‌ترین صفر به وسط بازه جستجو
closest_zc = zero_crossings[np.argmin(np.abs(zero_crossings - search_radius))]
best_cut_absolute = zc_start + closest_zc
else:
# اگر صفر پیدا نشد (خیلی بعید)، همان نقطه کم‌انرژی را بگیر
best_cut_absolute = cut_absolute_approx
split_points.append(best_cut_absolute)
current_pos = best_cut_absolute
return split_points
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
session_id = str(uuid.uuid4())[:8]
temp_content_path = f"wav/c_{session_id}.wav"
temp_reference_path = f"wav/r_{session_id}.wav"
output_path = f"wav/out_{session_id}.wav"
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
try:
SR = 24000
# --- ورودی ---
if isinstance(content_wav, tuple):
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
else:
content_sr, content_data = content_wav
if len(content_data.shape) > 1: content_data = np.mean(content_data, axis=1)
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
if content_sr != SR:
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, SR)
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
content_full_np = content_tensor.squeeze().numpy()
# --- رفرنس ---
if isinstance(reference_wav, tuple):
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
else:
ref_sr, ref_data = reference_wav
if len(ref_data.shape) > 1: ref_data = np.mean(ref_data, axis=1)
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
if ref_sr != SR:
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, SR)
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
if ref_tensor.shape[1] > SR * 20: ref_tensor = ref_tensor[:, :SR * 20]
save_audio_pcm16(ref_tensor, temp_reference_path, SR)
pipeline = get_pipeline()
# --- تقسیم‌بندی پیشرفته ---
print(f"[{session_id}] Finding best energy split points (Zero-Crossing)...")
split_points = find_advanced_split_points(content_full_np, SR)
print(f"[{session_id}] Split into {len(split_points)-1} chunks.")
final_output = []
PADDING_SAMPLES = int(2.5 * SR) # کمی پدینگ بیشتر برای اطمینان
for i in range(len(split_points) - 1):
start = split_points[i]
end = split_points[i+1]
read_start = max(0, start - PADDING_SAMPLES)
read_end = end
chunk_input = content_full_np[read_start:read_end]
save_audio_pcm16(torch.FloatTensor(chunk_input).unsqueeze(0), temp_content_path, SR)
try:
gen = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=64,
)
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
gen_np = gen.detach().cpu().squeeze().numpy()
trim_amount = start - read_start
if len(gen_np) > trim_amount:
valid_audio = gen_np[trim_amount:]
# اتصال
if len(final_output) > 0:
# اگر برش روی سکوت نبوده (اجباری)، باید کمی بیشتر کراس‌فید کنیم
# تا تغییر ناگهانی لحن مخفی شود.
fade_len = int(0.03 * SR) # 30ms standard
if len(final_output[-1]) > fade_len and len(valid_audio) > fade_len:
fade_out = np.linspace(1, 0, fade_len)
fade_in = np.linspace(0, 1, fade_len)
prev_tail = final_output[-1][-fade_len:]
curr_head = valid_audio[:fade_len]
mixed = (prev_tail * fade_out) + (curr_head * fade_in)
final_output[-1][-fade_len:] = mixed
valid_audio = valid_audio[fade_len:]
final_output.append(valid_audio)
except Exception as e:
print(f"Error segment {i}: {e}")
# پر کردن جای خالی با سکوت برای به هم نریختن تایم
final_output.append(np.zeros(end - start))
if len(final_output) > 0:
full_audio = np.concatenate(final_output)
else:
full_audio = np.zeros(SR)
save_audio_pcm16(full_audio, output_path, SR)
return output_path
finally:
if os.path.exists(temp_content_path): os.remove(temp_content_path)
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
with gr.Blocks(title="Vevo-Timbre (Pro Logic)") as demo:
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion")
gr.Markdown("Robust Splitting: Uses Minimum Energy + Zero Crossing detection to handle fast speech without glitches.")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio", type="numpy")
timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
timbre_button = gr.Button("Generate", variant="primary")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
demo.launch()