Update requirements.txt
Browse files- requirements.txt +31 -258
requirements.txt
CHANGED
|
@@ -1,258 +1,31 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
except Exception as e:
|
| 33 |
-
print(f"Error installing espeak-ng: {e}")
|
| 34 |
-
|
| 35 |
-
install_espeak()
|
| 36 |
-
|
| 37 |
-
def patch_langsegment_init():
|
| 38 |
-
try:
|
| 39 |
-
spec = importlib.util.find_spec("LangSegment")
|
| 40 |
-
if spec is None or spec.origin is None: return
|
| 41 |
-
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
|
| 42 |
-
if not os.path.exists(init_path):
|
| 43 |
-
for site_pkg_path in site.getsitepackages():
|
| 44 |
-
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
|
| 45 |
-
if os.path.exists(potential_path):
|
| 46 |
-
init_path = potential_path
|
| 47 |
-
break
|
| 48 |
-
else: return
|
| 49 |
-
|
| 50 |
-
with open(init_path, 'r') as f: lines = f.readlines()
|
| 51 |
-
modified = False
|
| 52 |
-
new_lines = []
|
| 53 |
-
target_line_prefix = "from .LangSegment import"
|
| 54 |
-
|
| 55 |
-
for line in lines:
|
| 56 |
-
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
|
| 57 |
-
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
|
| 58 |
-
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
|
| 59 |
-
new_lines.append(mod_line + '\n')
|
| 60 |
-
modified = True
|
| 61 |
-
else:
|
| 62 |
-
new_lines.append(line)
|
| 63 |
-
|
| 64 |
-
if modified:
|
| 65 |
-
with open(init_path, 'w') as f: f.writelines(new_lines)
|
| 66 |
-
try:
|
| 67 |
-
import LangSegment
|
| 68 |
-
importlib.reload(LangSegment)
|
| 69 |
-
except: pass
|
| 70 |
-
except: pass
|
| 71 |
-
|
| 72 |
-
patch_langsegment_init()
|
| 73 |
-
|
| 74 |
-
if not os.path.exists("Amphion"):
|
| 75 |
-
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
|
| 76 |
-
os.chdir("Amphion")
|
| 77 |
-
else:
|
| 78 |
-
if not os.getcwd().endswith("Amphion"):
|
| 79 |
-
os.chdir("Amphion")
|
| 80 |
-
|
| 81 |
-
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
|
| 82 |
-
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
|
| 83 |
-
|
| 84 |
-
os.makedirs("wav", exist_ok=True)
|
| 85 |
-
os.makedirs("ckpts/Vevo", exist_ok=True)
|
| 86 |
-
|
| 87 |
-
from models.vc.vevo.vevo_utils import VevoInferencePipeline
|
| 88 |
-
|
| 89 |
-
# --- تابع ذخیره سازی دقیق (16-bit PCM) ---
|
| 90 |
-
# این تابع کلید حل مشکل نویز صداست. فایل را دقیقاً مثل WAV استاندارد ذخیره میکند.
|
| 91 |
-
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
|
| 92 |
-
try:
|
| 93 |
-
if isinstance(waveform, torch.Tensor):
|
| 94 |
-
waveform = waveform.detach().cpu()
|
| 95 |
-
if waveform.dim() == 2 and waveform.shape[0] == 1:
|
| 96 |
-
waveform = waveform.squeeze(0)
|
| 97 |
-
waveform = waveform.numpy()
|
| 98 |
-
|
| 99 |
-
# تبدیل به فرمت 16 بیتی برای جلوگیری از نویز
|
| 100 |
-
# (مدلهای Vevo با فرمت Float گاهی مشکل دارند)
|
| 101 |
-
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
|
| 102 |
-
|
| 103 |
-
except Exception as e:
|
| 104 |
-
print(f"Save error: {e}")
|
| 105 |
-
raise e
|
| 106 |
-
|
| 107 |
-
def setup_configs():
|
| 108 |
-
if downloaded_resources["configs"]: return
|
| 109 |
-
config_path = "models/vc/vevo/config"
|
| 110 |
-
os.makedirs(config_path, exist_ok=True)
|
| 111 |
-
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
|
| 112 |
-
|
| 113 |
-
for file in config_files:
|
| 114 |
-
file_path = f"{config_path}/{file}"
|
| 115 |
-
if not os.path.exists(file_path):
|
| 116 |
-
try:
|
| 117 |
-
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
|
| 118 |
-
subprocess.run(["cp", file_data, file_path])
|
| 119 |
-
except Exception as e: print(f"Error downloading config {file}: {e}")
|
| 120 |
-
downloaded_resources["configs"] = True
|
| 121 |
-
|
| 122 |
-
setup_configs()
|
| 123 |
-
|
| 124 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 125 |
-
print(f"Using device: {device}")
|
| 126 |
-
|
| 127 |
-
inference_pipelines = {}
|
| 128 |
-
|
| 129 |
-
def preload_all_resources():
|
| 130 |
-
print("Preloading resources...")
|
| 131 |
-
setup_configs()
|
| 132 |
-
|
| 133 |
-
global downloaded_content_style_tokenizer_path
|
| 134 |
-
global downloaded_fmt_path
|
| 135 |
-
global downloaded_vocoder_path
|
| 136 |
-
|
| 137 |
-
if not downloaded_resources["tokenizer_vq8192"]:
|
| 138 |
-
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
|
| 139 |
-
downloaded_content_style_tokenizer_path = local_dir
|
| 140 |
-
downloaded_resources["tokenizer_vq8192"] = True
|
| 141 |
-
|
| 142 |
-
if not downloaded_resources["fmt_Vq8192ToMels"]:
|
| 143 |
-
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
|
| 144 |
-
downloaded_fmt_path = local_dir
|
| 145 |
-
downloaded_resources["fmt_Vq8192ToMels"] = True
|
| 146 |
-
|
| 147 |
-
if not downloaded_resources["vocoder"]:
|
| 148 |
-
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
|
| 149 |
-
downloaded_vocoder_path = local_dir
|
| 150 |
-
downloaded_resources["vocoder"] = True
|
| 151 |
-
print("Resources ready.")
|
| 152 |
-
|
| 153 |
-
downloaded_content_style_tokenizer_path = None
|
| 154 |
-
downloaded_fmt_path = None
|
| 155 |
-
downloaded_vocoder_path = None
|
| 156 |
-
|
| 157 |
-
preload_all_resources()
|
| 158 |
-
|
| 159 |
-
def get_pipeline():
|
| 160 |
-
if "timbre" in inference_pipelines:
|
| 161 |
-
return inference_pipelines["timbre"]
|
| 162 |
-
|
| 163 |
-
pipeline = VevoInferencePipeline(
|
| 164 |
-
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
|
| 165 |
-
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
|
| 166 |
-
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
|
| 167 |
-
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
|
| 168 |
-
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
|
| 169 |
-
device=device,
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
inference_pipelines["timbre"] = pipeline
|
| 173 |
-
return pipeline
|
| 174 |
-
|
| 175 |
-
@spaces.GPU()
|
| 176 |
-
def vevo_timbre(content_wav, reference_wav):
|
| 177 |
-
session_id = str(uuid.uuid4())[:8]
|
| 178 |
-
temp_content_path = f"wav/c_{session_id}.wav"
|
| 179 |
-
temp_reference_path = f"wav/r_{session_id}.wav"
|
| 180 |
-
output_path = f"wav/out_{session_id}.wav"
|
| 181 |
-
|
| 182 |
-
if content_wav is None or reference_wav is None:
|
| 183 |
-
raise ValueError("Please upload audio files")
|
| 184 |
-
|
| 185 |
-
try:
|
| 186 |
-
# --- پردازش صدای اصلی ---
|
| 187 |
-
if isinstance(content_wav, tuple):
|
| 188 |
-
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
|
| 189 |
-
else:
|
| 190 |
-
content_sr, content_data = content_wav
|
| 191 |
-
|
| 192 |
-
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 193 |
-
content_data = np.mean(content_data, axis=1)
|
| 194 |
-
|
| 195 |
-
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 196 |
-
|
| 197 |
-
if content_sr != 24000:
|
| 198 |
-
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
| 199 |
-
content_sr = 24000
|
| 200 |
-
|
| 201 |
-
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 202 |
-
|
| 203 |
-
# --- پردازش صدای رفرنس ---
|
| 204 |
-
if isinstance(reference_wav, tuple):
|
| 205 |
-
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
|
| 206 |
-
else:
|
| 207 |
-
ref_sr, ref_data = reference_wav
|
| 208 |
-
|
| 209 |
-
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
|
| 210 |
-
ref_data = np.mean(ref_data, axis=1)
|
| 211 |
-
|
| 212 |
-
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 213 |
-
if ref_sr != 24000:
|
| 214 |
-
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
|
| 215 |
-
ref_sr = 24000
|
| 216 |
-
|
| 217 |
-
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
|
| 218 |
-
|
| 219 |
-
# *** ذخیره با فرمت PCM_16 (کلید حل مشکل نویز) ***
|
| 220 |
-
save_audio_pcm16(content_tensor, temp_content_path, content_sr)
|
| 221 |
-
save_audio_pcm16(ref_tensor, temp_reference_path, ref_sr)
|
| 222 |
-
|
| 223 |
-
print(f"[{session_id}] Processing...")
|
| 224 |
-
|
| 225 |
-
pipeline = get_pipeline()
|
| 226 |
-
|
| 227 |
-
# اجرای مدل
|
| 228 |
-
gen_audio = pipeline.inference_fm(
|
| 229 |
-
src_wav_path=temp_content_path,
|
| 230 |
-
timbre_ref_wav_path=temp_reference_path,
|
| 231 |
-
flow_matching_steps=32,
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 235 |
-
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 236 |
-
|
| 237 |
-
# ذخیره خروجی نهایی
|
| 238 |
-
save_audio_pcm16(gen_audio, output_path, 24000)
|
| 239 |
-
return output_path
|
| 240 |
-
|
| 241 |
-
finally:
|
| 242 |
-
if os.path.exists(temp_content_path): os.remove(temp_content_path)
|
| 243 |
-
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
|
| 244 |
-
|
| 245 |
-
with gr.Blocks(title="Vevo-Timbre (High Quality)") as demo:
|
| 246 |
-
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion")
|
| 247 |
-
|
| 248 |
-
with gr.Row():
|
| 249 |
-
with gr.Column():
|
| 250 |
-
timbre_content = gr.Audio(label="Source Audio", type="numpy")
|
| 251 |
-
timbre_reference = gr.Audio(label="Target Timbre", type="numpy")
|
| 252 |
-
timbre_button = gr.Button("Generate", variant="primary")
|
| 253 |
-
with gr.Column():
|
| 254 |
-
timbre_output = gr.Audio(label="Result")
|
| 255 |
-
|
| 256 |
-
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
|
| 257 |
-
|
| 258 |
-
demo.launch()
|
|
|
|
| 1 |
+
gradio>=3.50.2
|
| 2 |
+
torch
|
| 3 |
+
torchaudio
|
| 4 |
+
numpy<2.0.0
|
| 5 |
+
huggingface_hub>=0.14.1
|
| 6 |
+
librosa>=0.9.2
|
| 7 |
+
PyYAML>=6.0
|
| 8 |
+
accelerate>=0.20.3
|
| 9 |
+
safetensors>=0.3.1
|
| 10 |
+
phonemizer>=3.2.0
|
| 11 |
+
setuptools
|
| 12 |
+
onnxruntime
|
| 13 |
+
transformers==4.41.2
|
| 14 |
+
unidecode
|
| 15 |
+
scipy>=1.12.0
|
| 16 |
+
encodec
|
| 17 |
+
g2p_en
|
| 18 |
+
jieba
|
| 19 |
+
cn2an
|
| 20 |
+
pypinyin
|
| 21 |
+
langsegment==0.2.0
|
| 22 |
+
pyopenjtalk
|
| 23 |
+
pykakasi
|
| 24 |
+
json5
|
| 25 |
+
black>=24.1.1
|
| 26 |
+
ruamel.yaml
|
| 27 |
+
tqdm
|
| 28 |
+
openai-whisper
|
| 29 |
+
ipython
|
| 30 |
+
pyworld
|
| 31 |
+
soundfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|