File size: 13,168 Bytes
6eac6e1 d7672e1 b78fc58 6eac6e1 c8c87cd 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 d7672e1 6eac6e1 a4df331 428894f a4df331 97b11e9 a4df331 6eac6e1 3fbd4a0 6eac6e1 2775a80 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 d7672e1 6eac6e1 428894f 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 3fbd4a0 6eac6e1 d7672e1 6eac6e1 3fbd4a0 d7672e1 3fbd4a0 6eac6e1 d7672e1 6eac6e1 d7672e1 f2ebb51 d7672e1 3fbd4a0 d7672e1 3fbd4a0 d7672e1 6eac6e1 f2ebb51 428894f f2ebb51 2775a80 f2ebb51 d7672e1 f375b6c f2ebb51 09eb27e 428894f f375b6c f2ebb51 d7672e1 09eb27e d7672e1 09eb27e 428894f 09eb27e f375b6c 428894f f375b6c 428894f f2ebb51 428894f f2ebb51 f375b6c 09eb27e 428894f 09eb27e 428894f 09eb27e f375b6c 09eb27e f375b6c 09eb27e 428894f f2ebb51 09eb27e f2ebb51 09eb27e 428894f 09eb27e f2ebb51 09eb27e d7672e1 6eac6e1 f2ebb51 3fbd4a0 f2ebb51 3fbd4a0 d7672e1 6eac6e1 3fbd4a0 6eac6e1 380e75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import uuid
import soundfile as sf
# منابع ضروری
downloaded_resources = {
"configs": False,
"tokenizer_vq8192": False,
"fmt_Vq8192ToMels": False,
"vocoder": False
}
def install_espeak():
try:
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
if result.returncode != 0:
print("Installing espeak-ng...")
subprocess.run(["apt-get", "update"], check=True)
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
except Exception as e:
print(f"Error installing espeak-ng: {e}")
install_espeak()
def patch_langsegment_init():
try:
spec = importlib.util.find_spec("LangSegment")
if spec is None or spec.origin is None: return
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
if not os.path.exists(init_path):
for site_pkg_path in site.getsitepackages():
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
if os.path.exists(potential_path):
init_path = potential_path
break
else: return
with open(init_path, 'r') as f: lines = f.readlines()
modified = False
new_lines = []
target_line_prefix = "from .LangSegment import"
for line in lines:
if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',')
new_lines.append(mod_line + '\n')
modified = True
else:
new_lines.append(line)
if modified:
with open(init_path, 'w') as f: f.writelines(new_lines)
try:
import LangSegment
importlib.reload(LangSegment)
except: pass
except: pass
patch_langsegment_init()
if not os.path.exists("Amphion"):
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
os.chdir("Amphion")
else:
if not os.getcwd().endswith("Amphion"):
os.chdir("Amphion")
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)
from models.vc.vevo.vevo_utils import VevoInferencePipeline
def save_audio_pcm16(waveform, output_path, sample_rate=24000):
try:
if isinstance(waveform, torch.Tensor):
waveform = waveform.detach().cpu()
if waveform.dim() == 2 and waveform.shape[0] == 1:
waveform = waveform.squeeze(0)
waveform = waveform.numpy()
sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
except Exception as e:
print(f"Save error: {e}")
raise e
def setup_configs():
if downloaded_resources["configs"]: return
config_path = "models/vc/vevo/config"
os.makedirs(config_path, exist_ok=True)
config_files = ["Vq8192ToMels.json", "Vocoder.json"]
for file in config_files:
file_path = f"{config_path}/{file}"
if not os.path.exists(file_path):
try:
file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
subprocess.run(["cp", file_data, file_path])
except Exception as e: print(f"Error downloading config {file}: {e}")
downloaded_resources["configs"] = True
setup_configs()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
inference_pipelines = {}
def preload_all_resources():
print("Preloading resources...")
setup_configs()
global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
if not downloaded_resources["tokenizer_vq8192"]:
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
downloaded_content_style_tokenizer_path = local_dir
downloaded_resources["tokenizer_vq8192"] = True
if not downloaded_resources["fmt_Vq8192ToMels"]:
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
downloaded_fmt_path = local_dir
downloaded_resources["fmt_Vq8192ToMels"] = True
if not downloaded_resources["vocoder"]:
local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
downloaded_vocoder_path = local_dir
downloaded_resources["vocoder"] = True
print("Resources ready.")
downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None
preload_all_resources()
def get_pipeline():
if "timbre" in inference_pipelines:
return inference_pipelines["timbre"]
pipeline = VevoInferencePipeline(
content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
device=device,
)
inference_pipelines["timbre"] = pipeline
return pipeline
@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
session_id = str(uuid.uuid4())[:8]
temp_content_path = f"wav/c_{session_id}.wav"
temp_reference_path = f"wav/r_{session_id}.wav"
output_path = f"wav/out_{session_id}.wav"
if content_wav is None or reference_wav is None:
raise ValueError("Please upload audio files")
try:
# --- آماده سازی Reference (اول رفرنس را پردازش میکنیم تا سطح صدا را بگیریم) ---
if isinstance(reference_wav, tuple):
ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
else:
ref_sr, ref_data = reference_wav
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
ref_data = np.mean(ref_data, axis=1)
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
if ref_sr != 24000:
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
ref_sr = 24000
# محاسبه انرژی رفرنس
ref_max_vol = torch.max(torch.abs(ref_tensor)) + 1e-6
ref_tensor = ref_tensor / ref_max_vol * 0.95 # نرمال سازی رفرنس
# برش رفرنس به 20 ثانیه
if ref_tensor.shape[1] > 24000 * 20:
ref_tensor = ref_tensor[:, :24000 * 20]
save_audio_pcm16(ref_tensor, temp_reference_path, ref_sr)
# --- آماده سازی Content ---
if isinstance(content_wav, tuple):
content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
else:
content_sr, content_data = content_wav
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
content_data = np.mean(content_data, axis=1)
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
if content_sr != 24000:
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
content_sr = 24000
# نرمال سازی هوشمند: صدای ورودی را همسطح صدای رفرنس میکنیم
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
# --- منطق Chunking ---
pipeline = get_pipeline()
SR = 24000
CHUNK_LEN = 10 * SR
OVERLAP = 1 * SR
INPUT_SIZE = CHUNK_LEN + OVERLAP
total_samples = content_tensor.shape[1]
print(f"[{session_id}] High Quality Processing (64 Steps)... Duration: {total_samples/SR:.2f}s")
final_parts = []
overlap_buffer = None
for start in range(0, total_samples, CHUNK_LEN):
end_input = min(start + INPUT_SIZE, total_samples)
current_input_chunk = content_tensor[:, start:end_input]
save_audio_pcm16(current_input_chunk, temp_content_path, SR)
try:
gen = pipeline.inference_fm(
src_wav_path=temp_content_path,
timbre_ref_wav_path=temp_reference_path,
flow_matching_steps=64, # <--- کیفیت بالا (قبلاً 32 بود)
)
if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
if gen.dim() == 1: gen = gen.unsqueeze(0)
gen = gen.cpu().squeeze(0).numpy()
current_len = len(gen)
if overlap_buffer is not None:
mix_len = len(overlap_buffer)
if current_len < mix_len:
mix_len = current_len
overlap_buffer = overlap_buffer[:mix_len]
head_to_mix = gen[:mix_len]
body_rest = gen[mix_len:]
alpha = np.linspace(0, 1, mix_len)
blended_segment = (overlap_buffer * (1 - alpha)) + (head_to_mix * alpha)
final_parts.append(blended_segment)
if len(body_rest) > OVERLAP:
pure_body = body_rest[:-OVERLAP]
final_parts.append(pure_body)
overlap_buffer = body_rest[-OVERLAP:]
else:
final_parts.append(body_rest)
overlap_buffer = None
else:
if current_len > OVERLAP:
final_parts.append(gen[:-OVERLAP])
overlap_buffer = gen[-OVERLAP:]
else:
final_parts.append(gen)
overlap_buffer = None
except Exception as e:
print(f"Error in chunk: {e}")
missing_len = end_input - start
if overlap_buffer is not None:
missing_len -= len(overlap_buffer)
final_parts.append(overlap_buffer)
overlap_buffer = None
final_parts.append(np.zeros(max(0, missing_len)))
if overlap_buffer is not None:
final_parts.append(overlap_buffer)
if len(final_parts) > 0:
full_audio = np.concatenate(final_parts)
else:
full_audio = np.zeros(24000)
save_audio_pcm16(full_audio, output_path, SR)
return output_path
finally:
if os.path.exists(temp_content_path): os.remove(temp_content_path)
if os.path.exists(temp_reference_path): os.remove(temp_reference_path)
with gr.Blocks(title="Vevo-Timbre (Ultra Quality)") as demo:
gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion (Ultra Quality)")
gr.Markdown("""
**ویژگیها:**
- **Steps 64:** کیفیت و دقت بافت صدا دو برابر شده است.
- **Auto-Leveling:** سطح صدای شما با مدل تنظیم میشود.
- **Seamless Stitching:** بدون پرش و بدون اضافه شدن زمان.
**نکته مهم:** برای بهترین نتیجه، سعی کنید **لحن، سرعت و احساس** صدای خودتان را شبیه فایل هدف کنید. مدل فقط جنس صدا را تغییر میدهد، نه بازیگری شما را!
""")
with gr.Row():
with gr.Column():
timbre_content = gr.Audio(label="Source Audio (صدای شما)", type="numpy")
timbre_reference = gr.Audio(label="Target Timbre (صدای هدف)", type="numpy")
timbre_button = gr.Button("Generate (Ultra Quality)", variant="primary")
with gr.Column():
timbre_output = gr.Audio(label="Result")
timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)
demo.launch() |