File size: 13,168 Bytes
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
d7672e1
b78fc58
6eac6e1
c8c87cd
6eac6e1
 
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
3fbd4a0
6eac6e1
 
 
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
3fbd4a0
 
 
 
 
6eac6e1
3fbd4a0
6eac6e1
 
3fbd4a0
6eac6e1
3fbd4a0
 
 
d7672e1
6eac6e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4df331
 
428894f
a4df331
 
 
 
 
 
97b11e9
a4df331
 
 
6eac6e1
 
3fbd4a0
6eac6e1
 
2775a80
6eac6e1
 
 
 
 
3fbd4a0
6eac6e1
3fbd4a0
6eac6e1
 
 
 
 
 
 
 
 
 
d7672e1
6eac6e1
428894f
6eac6e1
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
 
 
3fbd4a0
6eac6e1
 
d7672e1
6eac6e1
 
 
 
 
 
 
3fbd4a0
 
 
 
 
d7672e1
 
 
 
 
3fbd4a0
 
 
 
 
6eac6e1
 
 
d7672e1
 
 
 
6eac6e1
 
 
 
d7672e1
f2ebb51
d7672e1
 
 
 
3fbd4a0
d7672e1
 
3fbd4a0
d7672e1
 
 
 
6eac6e1
f2ebb51
 
 
 
 
428894f
 
 
 
f2ebb51
 
 
 
 
 
 
 
 
2775a80
f2ebb51
 
 
 
 
 
 
 
 
d7672e1
 
f375b6c
f2ebb51
 
09eb27e
428894f
f375b6c
f2ebb51
d7672e1
09eb27e
 
d7672e1
09eb27e
 
428894f
09eb27e
f375b6c
428894f
 
f375b6c
428894f
 
f2ebb51
428894f
f2ebb51
f375b6c
 
09eb27e
428894f
09eb27e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428894f
09eb27e
 
 
 
f375b6c
09eb27e
 
 
 
 
 
f375b6c
09eb27e
 
 
 
428894f
f2ebb51
09eb27e
 
 
f2ebb51
09eb27e
 
428894f
09eb27e
 
 
 
 
 
f2ebb51
09eb27e
 
d7672e1
 
 
 
 
6eac6e1
f2ebb51
 
 
 
 
 
 
 
 
 
3fbd4a0
 
 
f2ebb51
 
 
3fbd4a0
d7672e1
6eac6e1
3fbd4a0
6eac6e1
380e75f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import sys
import importlib.util
import site
import json
import torch
import gradio as gr
import torchaudio
import numpy as np
from huggingface_hub import snapshot_download, hf_hub_download
import subprocess
import re
import spaces
import uuid
import soundfile as sf

# منابع ضروری
downloaded_resources = {
    "configs": False,
    "tokenizer_vq8192": False,
    "fmt_Vq8192ToMels": False,
    "vocoder": False
}

def install_espeak():
    try:
        result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
        if result.returncode != 0:
            print("Installing espeak-ng...")
            subprocess.run(["apt-get", "update"], check=True)
            subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
    except Exception as e:
        print(f"Error installing espeak-ng: {e}")

install_espeak()

def patch_langsegment_init():
    try:
        spec = importlib.util.find_spec("LangSegment")
        if spec is None or spec.origin is None: return
        init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
        if not os.path.exists(init_path):
            for site_pkg_path in site.getsitepackages():
                potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
                if os.path.exists(potential_path):
                    init_path = potential_path
                    break
            else: return

        with open(init_path, 'r') as f: lines = f.readlines()
        modified = False
        new_lines = []
        target_line_prefix = "from .LangSegment import"

        for line in lines:
            if line.strip().startswith(target_line_prefix) and ('setLangfilters' in line or 'getLangfilters' in line):
                mod_line = line.replace(',setLangfilters', '').replace(',getLangfilters', '')
                mod_line = mod_line.replace('setLangfilters,', '').replace('getLangfilters,', '').rstrip(',') 
                new_lines.append(mod_line + '\n')
                modified = True
            else:
                new_lines.append(line)

        if modified:
            with open(init_path, 'w') as f: f.writelines(new_lines)
            try:
                import LangSegment
                importlib.reload(LangSegment)
            except: pass
    except: pass

patch_langsegment_init()

if not os.path.exists("Amphion"):
    subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
    os.chdir("Amphion")
else:
    if not os.getcwd().endswith("Amphion"):
        os.chdir("Amphion")

if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
    sys.path.append(os.path.dirname(os.path.abspath("Amphion")))

os.makedirs("wav", exist_ok=True)
os.makedirs("ckpts/Vevo", exist_ok=True)

from models.vc.vevo.vevo_utils import VevoInferencePipeline

def save_audio_pcm16(waveform, output_path, sample_rate=24000):
    try:
        if isinstance(waveform, torch.Tensor):
            waveform = waveform.detach().cpu()
            if waveform.dim() == 2 and waveform.shape[0] == 1:
                waveform = waveform.squeeze(0)
            waveform = waveform.numpy()
        sf.write(output_path, waveform, sample_rate, subtype='PCM_16')
    except Exception as e:
        print(f"Save error: {e}")
        raise e

def setup_configs():
    if downloaded_resources["configs"]: return
    config_path = "models/vc/vevo/config"
    os.makedirs(config_path, exist_ok=True)
    config_files = ["Vq8192ToMels.json", "Vocoder.json"]
    
    for file in config_files:
        file_path = f"{config_path}/{file}"
        if not os.path.exists(file_path):
            try:
                file_data = hf_hub_download(repo_id="amphion/Vevo", filename=f"config/{file}", repo_type="model")
                subprocess.run(["cp", file_data, file_path])
            except Exception as e: print(f"Error downloading config {file}: {e}")
    downloaded_resources["configs"] = True

setup_configs()

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")

inference_pipelines = {}

def preload_all_resources():
    print("Preloading resources...")
    setup_configs()
    global downloaded_content_style_tokenizer_path, downloaded_fmt_path, downloaded_vocoder_path
    
    if not downloaded_resources["tokenizer_vq8192"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["tokenizer/vq8192/*"])
        downloaded_content_style_tokenizer_path = local_dir
        downloaded_resources["tokenizer_vq8192"] = True
    
    if not downloaded_resources["fmt_Vq8192ToMels"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vq8192ToMels/*"])
        downloaded_fmt_path = local_dir
        downloaded_resources["fmt_Vq8192ToMels"] = True
    
    if not downloaded_resources["vocoder"]:
        local_dir = snapshot_download(repo_id="amphion/Vevo", repo_type="model", cache_dir="./ckpts/Vevo", allow_patterns=["acoustic_modeling/Vocoder/*"])
        downloaded_vocoder_path = local_dir
        downloaded_resources["vocoder"] = True
    print("Resources ready.")

downloaded_content_style_tokenizer_path = None
downloaded_fmt_path = None
downloaded_vocoder_path = None

preload_all_resources()

def get_pipeline():
    if "timbre" in inference_pipelines:
        return inference_pipelines["timbre"]
    
    pipeline = VevoInferencePipeline(
        content_style_tokenizer_ckpt_path=os.path.join(downloaded_content_style_tokenizer_path, "tokenizer/vq8192"),
        fmt_cfg_path="./models/vc/vevo/config/Vq8192ToMels.json",
        fmt_ckpt_path=os.path.join(downloaded_fmt_path, "acoustic_modeling/Vq8192ToMels"),
        vocoder_cfg_path="./models/vc/vevo/config/Vocoder.json",
        vocoder_ckpt_path=os.path.join(downloaded_vocoder_path, "acoustic_modeling/Vocoder"),
        device=device,
    )
    
    inference_pipelines["timbre"] = pipeline
    return pipeline

@spaces.GPU()
def vevo_timbre(content_wav, reference_wav):
    session_id = str(uuid.uuid4())[:8]
    temp_content_path = f"wav/c_{session_id}.wav"
    temp_reference_path = f"wav/r_{session_id}.wav"
    output_path = f"wav/out_{session_id}.wav"
    
    if content_wav is None or reference_wav is None:
        raise ValueError("Please upload audio files")
    
    try:
        # --- آماده سازی Reference (اول رفرنس را پردازش می‌کنیم تا سطح صدا را بگیریم) ---
        if isinstance(reference_wav, tuple):
            ref_sr, ref_data = reference_wav if isinstance(reference_wav[0], int) else (reference_wav[1], reference_wav[0])
        else:
            ref_sr, ref_data = reference_wav

        if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
            ref_data = np.mean(ref_data, axis=1)

        ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
        if ref_sr != 24000:
            ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
            ref_sr = 24000
        
        # محاسبه انرژی رفرنس
        ref_max_vol = torch.max(torch.abs(ref_tensor)) + 1e-6
        ref_tensor = ref_tensor / ref_max_vol * 0.95 # نرمال سازی رفرنس
        
        # برش رفرنس به 20 ثانیه
        if ref_tensor.shape[1] > 24000 * 20:
             ref_tensor = ref_tensor[:, :24000 * 20]

        save_audio_pcm16(ref_tensor, temp_reference_path, ref_sr)

        # --- آماده سازی Content ---
        if isinstance(content_wav, tuple):
            content_sr, content_data = content_wav if isinstance(content_wav[0], int) else (content_wav[1], content_wav[0])
        else:
            content_sr, content_data = content_wav

        if len(content_data.shape) > 1 and content_data.shape[1] > 1:
            content_data = np.mean(content_data, axis=1)
        
        content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
        if content_sr != 24000:
            content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
            content_sr = 24000
        
        # نرمال سازی هوشمند: صدای ورودی را هم‌سطح صدای رفرنس می‌کنیم
        content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95

        # --- منطق Chunking ---
        pipeline = get_pipeline()
        
        SR = 24000
        CHUNK_LEN = 10 * SR
        OVERLAP = 1 * SR 
        INPUT_SIZE = CHUNK_LEN + OVERLAP 
        
        total_samples = content_tensor.shape[1]
        print(f"[{session_id}] High Quality Processing (64 Steps)... Duration: {total_samples/SR:.2f}s")
        
        final_parts = []
        overlap_buffer = None
        
        for start in range(0, total_samples, CHUNK_LEN):
            end_input = min(start + INPUT_SIZE, total_samples)
            
            current_input_chunk = content_tensor[:, start:end_input]
            save_audio_pcm16(current_input_chunk, temp_content_path, SR)
            
            try:
                gen = pipeline.inference_fm(
                    src_wav_path=temp_content_path,
                    timbre_ref_wav_path=temp_reference_path,
                    flow_matching_steps=64,  # <--- کیفیت بالا (قبلاً 32 بود)
                )
                
                if torch.isnan(gen).any(): gen = torch.nan_to_num(gen, nan=0.0)
                if gen.dim() == 1: gen = gen.unsqueeze(0)
                gen = gen.cpu().squeeze(0).numpy()
                
                current_len = len(gen)
                
                if overlap_buffer is not None:
                    mix_len = len(overlap_buffer)
                    if current_len < mix_len:
                        mix_len = current_len
                        overlap_buffer = overlap_buffer[:mix_len]
                    
                    head_to_mix = gen[:mix_len]
                    body_rest = gen[mix_len:]
                    
                    alpha = np.linspace(0, 1, mix_len)
                    blended_segment = (overlap_buffer * (1 - alpha)) + (head_to_mix * alpha)
                    
                    final_parts.append(blended_segment)
                    
                    if len(body_rest) > OVERLAP:
                        pure_body = body_rest[:-OVERLAP]
                        final_parts.append(pure_body)
                        overlap_buffer = body_rest[-OVERLAP:]
                    else:
                        final_parts.append(body_rest)
                        overlap_buffer = None
                
                else:
                    if current_len > OVERLAP:
                        final_parts.append(gen[:-OVERLAP])
                        overlap_buffer = gen[-OVERLAP:]
                    else:
                        final_parts.append(gen)
                        overlap_buffer = None

            except Exception as e:
                print(f"Error in chunk: {e}")
                missing_len = end_input - start
                if overlap_buffer is not None:
                    missing_len -= len(overlap_buffer)
                    final_parts.append(overlap_buffer)
                    overlap_buffer = None
                final_parts.append(np.zeros(max(0, missing_len)))

        if overlap_buffer is not None:
            final_parts.append(overlap_buffer)
            
        if len(final_parts) > 0:
            full_audio = np.concatenate(final_parts)
        else:
            full_audio = np.zeros(24000)

        save_audio_pcm16(full_audio, output_path, SR)
        return output_path

    finally:
        if os.path.exists(temp_content_path): os.remove(temp_content_path)
        if os.path.exists(temp_reference_path): os.remove(temp_reference_path)

with gr.Blocks(title="Vevo-Timbre (Ultra Quality)") as demo:
    gr.Markdown("## Vevo-Timbre: Zero-Shot Voice Conversion (Ultra Quality)")
    gr.Markdown("""
    **ویژگی‌ها:**
    - **Steps 64:** کیفیت و دقت بافت صدا دو برابر شده است.
    - **Auto-Leveling:** سطح صدای شما با مدل تنظیم می‌شود.
    - **Seamless Stitching:** بدون پرش و بدون اضافه شدن زمان.
    
    **نکته مهم:** برای بهترین نتیجه، سعی کنید **لحن، سرعت و احساس** صدای خودتان را شبیه فایل هدف کنید. مدل فقط جنس صدا را تغییر می‌دهد، نه بازیگری شما را!
    """)
    
    with gr.Row():
        with gr.Column():
            timbre_content = gr.Audio(label="Source Audio (صدای شما)", type="numpy")
            timbre_reference = gr.Audio(label="Target Timbre (صدای هدف)", type="numpy")
            timbre_button = gr.Button("Generate (Ultra Quality)", variant="primary")
        with gr.Column():
            timbre_output = gr.Audio(label="Result")
            
    timbre_button.click(vevo_timbre, inputs=[timbre_content, timbre_reference], outputs=timbre_output)

demo.launch()