Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,430 Bytes
648df8c 4c7ae41 648df8c 4c7ae41 7fd363a 648df8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import gradio as gr
import spaces
from PIL import Image, ImageDraw, ImageFont
import re
import numpy as np
from skimage.measure import label, regionprops
from skimage.morphology import binary_dilation, disk
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
from sam3.visualization_utils import plot_bbox, plot_mask, COLORS
import matplotlib.pyplot as plt
from vlm_fo1.model.builder import load_pretrained_model
from vlm_fo1.mm_utils import (
prepare_inputs,
extract_predictions_to_indexes,
)
from vlm_fo1.task_templates import *
import torch
import os
from copy import deepcopy
EXAMPLES = [
["demo/sam3_examples/00000-72.jpg","airplane with letter AE on its body"],
["demo/sam3_examples/00000-32.jpg","the lying cat which is not black"],
["demo/sam3_examples/00000-22.jpg","person wearing a black top"],
["demo/sam3_examples/000000378453.jpg", "zebra inside the mud puddle"],
["demo/sam3_examples/00000-242.jpg", "person who is holding a book"],
]
def get_valid_examples():
valid_examples = []
demo_dir = os.path.dirname(os.path.abspath(__file__))
for example in EXAMPLES:
img_path = example[0]
full_path = os.path.join(demo_dir, img_path)
if os.path.exists(full_path):
valid_examples.append([
full_path,
example[1],
example[2]
])
elif os.path.exists(img_path):
valid_examples.append([
img_path,
example[1],
example[2]
])
return valid_examples
def detect_model(image, text, threshold=0.3):
inference_state = sam3_processor.set_image(image)
output = sam3_processor.set_text_prompt(state=inference_state, prompt=text)
boxes, scores, masks = output["boxes"], output["scores"], output["masks"]
sorted_indices = torch.argsort(scores, descending=True)
boxes = boxes[sorted_indices][:100, :]
scores = scores[sorted_indices][:100]
masks = masks[sorted_indices][:100]
# If the highest confidence score is greater than 0.5, filter with 0.3 threshold
if len(scores) > 0 and scores[0] > 0.75:
conf_threshold = 0.3
else:
conf_threshold = 0.05
mask = scores > conf_threshold
boxes = boxes[mask]
scores = scores[mask]
masks = masks[mask]
# Keep boxes with score > 0.8 in a separate list
high_conf_mask = scores > 0.8
high_conf_boxes = boxes[high_conf_mask]
print("========boxes========\n", boxes.tolist())
print("========scores========\n", scores.tolist())
print("========high_conf_boxes (>0.8)========\n", high_conf_boxes.tolist())
output = {
"boxes": boxes,
"scores": scores,
"masks": masks,
}
return boxes.tolist(), scores.tolist(), high_conf_boxes.tolist(), masks.tolist(), output
def multimodal_model(image, bboxes, scores, text):
if len(bboxes) == 0:
return None, {}, []
if '<image>' in text:
print(text)
parts = [part.replace('\\n', '\n') for part in re.split(rf'(<image>)', text) if part.strip()]
print(parts)
content = []
for part in parts:
if part == '<image>':
content.append({"type": "image_url", "image_url": {"url": image}})
else:
content.append({"type": "text", "text": part})
else:
content = [{
"type": "image_url",
"image_url": {
"url": image
}
}, {
"type": "text",
"text": text
}]
messages = [
{
"role": "user",
"content": content,
"bbox_list": bboxes
}
]
generation_kwargs = prepare_inputs(model_path, model, image_processors, tokenizer, messages,
max_tokens=4096, top_p=0.05, temperature=0.0, do_sample=False, image_size=1024)
with torch.inference_mode():
output_ids = model.generate(**generation_kwargs)
outputs = tokenizer.decode(output_ids[0, generation_kwargs['inputs'].shape[1]:]).strip()
print("========output========\n", outputs)
if '<ground>' in outputs:
prediction_dict = extract_predictions_to_indexes(outputs)
else:
match_pattern = r"<region(\d+)>"
matches = re.findall(match_pattern, outputs)
prediction_dict = {f"<region{m}>": {int(m)} for m in matches}
ans_bbox_json = []
ans_bbox_list = []
for k, v in prediction_dict.items():
for box_index in v:
box_index = int(box_index)
if box_index < len(bboxes):
current_bbox = bboxes[box_index]
current_score = scores[box_index]
ans_bbox_json.append({
"region_index": f"<region{box_index}>",
"xmin": current_bbox[0],
"ymin": current_bbox[1],
"xmax": current_bbox[2],
"ymax": current_bbox[3],
"label": k,
"score": current_score
})
ans_bbox_list.append(current_bbox)
return outputs, ans_bbox_json, ans_bbox_list
def draw_bboxes(img, results):
fig, ax = plt.subplots(figsize=(12, 8))
# fig.subplots_adjust(0, 0, 1, 1)
ax.imshow(img)
nb_objects = len(results["scores"])
print(f"found {nb_objects} object(s)")
for i in range(nb_objects):
color = COLORS[i % len(COLORS)]
plot_mask(results["masks"][i].squeeze(0).cpu(), color=color)
w, h = img.size
prob = results["scores"][i].item()
plot_bbox(
h,
w,
results["boxes"][i].cpu(),
text=f"(id={i}, {prob=:.2f})",
box_format="XYXY",
color=color,
relative_coords=False,
)
ax.axis("off")
fig.tight_layout(pad=0)
# Convert matplotlib figure to PIL Image
fig.canvas.draw()
buf = fig.canvas.buffer_rgba()
pil_img = Image.frombytes('RGBA', fig.canvas.get_width_height(), buf)
plt.close(fig)
return pil_img
@spaces.GPU
def process(image, prompt, threshold=0):
if image is None:
error_msg = "Error: Please upload an image or select a valid example."
print(f"Error: image is None, original input type: {type(image)}")
return None, None, error_msg, []
try:
image = image.convert('RGB')
except Exception as e:
error_msg = f"Error: Cannot process image - {str(e)}"
return None, None, error_msg, []
bboxes, scores, high_conf_bboxes, masks, output = detect_model(image, prompt, threshold)
fo1_prompt = OD_Counting_template.format(prompt)
ans, ans_bbox_json, ans_bbox_list = multimodal_model(image, bboxes, scores, fo1_prompt)
detection_image = draw_bboxes(image, output)
annotated_bboxes = []
if len(ans_bbox_json) > 0:
img_width, img_height = image.size
for item in ans_bbox_json:
xmin = max(0, min(img_width, int(item['xmin'])))
ymin = max(0, min(img_height, int(item['ymin'])))
xmax = max(0, min(img_width, int(item['xmax'])))
ymax = max(0, min(img_height, int(item['ymax'])))
annotated_bboxes.append(
((xmin, ymin, xmax, ymax), item['label'])
)
annotated_image = (image, annotated_bboxes)
return annotated_image, detection_image, ans_bbox_json
def update_btn(is_processing):
if is_processing:
return gr.update(value="Processing...", interactive=False)
else:
return gr.update(value="Submit", interactive=True)
def launch_demo():
with gr.Blocks() as demo:
gr.Markdown("# π VLM-FO1 + SAM3 Demo")
gr.Markdown("""
### π Instructions
Combine the SAM3 detection results with the VLM-FO1 model to enchance its dectection and segmentation performance on complex label tasks.
**How it works**
1. Upload or pick an example image.
2. Describe the target object in natural language.
3. Hit **Submit** to run SAM3 + VLM-FO1.
**Outputs**
- `SAM3 Result`: raw detections with masks/bboxes generated by SAM3.
- `VLM-FO1 Result`: filtered detections plus labels generated by VLM-FO1.
**Tips**
- One prompt at a time is currently supported. Multiple label prompts will be supported soon.
- Use the examples below to quickly explore the pipeline.
""")
gr.Markdown("""
### π References
- [SAM3](https://github.com/facebookresearch/sam3)
- [VLM-FO1](https://github.com/om-ai-lab/VLM-FO1)
""")
with gr.Row():
with gr.Column():
img_input_draw = gr.Image(
label="Image Input",
type="pil",
sources=['upload'],
)
gr.Markdown("### Prompt")
prompt_input = gr.Textbox(
label="Label Prompt",
lines=2,
)
submit_btn = gr.Button("Submit", variant="primary")
examples = gr.Examples(
examples=EXAMPLES,
inputs=[img_input_draw, prompt_input],
label="Click to load example",
examples_per_page=5
)
with gr.Column():
with gr.Accordion("SAM3 Result", open=True):
image_output_detection = gr.Image(label="SAM3 Result", height=400)
image_output = gr.AnnotatedImage(label="VLM-FO1 Result", height=400)
ans_bbox_json = gr.JSON(label="Extracted Detection Output")
submit_btn.click(
update_btn,
inputs=[gr.State(True)],
outputs=[submit_btn],
queue=False
).then(
process,
inputs=[img_input_draw, prompt_input],
outputs=[image_output, image_output_detection, ans_bbox_json],
queue=True
).then(
update_btn,
inputs=[gr.State(False)],
outputs=[submit_btn],
queue=False
)
return demo
if __name__ == "__main__":
# model_path = './resources/VLM-FO1_Qwen2.5-VL-3B-v01'
# sam3_model_path = './resources/sam3/sam3.pt'
# from modelscope import snapshot_download
# model_dir = snapshot_download('facebook/sam3', allow_patterns='sam3.pt')
# from huggingface_hub import hf_hub_download
# model_dir = hf_hub_download(
# repo_id='facebook/sam3',
# filename='sam3.pt',
# local_dir="./sam3_model"
import os
exit_code = os.system(f"wget -c https://airesources.oss-cn-hangzhou.aliyuncs.com/lp/wheel/sam3.pt")
model_path = 'omlab/VLM-FO1_Qwen2.5-VL-3B-v01'
tokenizer, model, image_processors = load_pretrained_model(
model_path=model_path,
device="cuda:0",
)
sam3_model = build_sam3_image_model(checkpoint_path='./sam3.pt', device="cuda",bpe_path='/home/user/app/detect_tools/sam3/assets/bpe_simple_vocab_16e6.txt.gz')
sam3_processor = Sam3Processor(sam3_model, confidence_threshold=0.0, device="cuda")
demo = launch_demo()
demo.launch()
|