Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,899 Bytes
56ef371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
from typing import Dict, List, Tuple, Union
import torch
import torch.nn as nn
from detect_tools.upn import BACKBONES, build_backbone, build_position_embedding
from detect_tools.upn.models.module import NestedTensor
from detect_tools.upn.models.utils import clean_state_dict
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other models than torchvision.models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, n):
super(FrozenBatchNorm2d, self).__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d, self)._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class Joiner(nn.Module):
"""A wrapper for the backbone and the position embedding.
Args:
backbone_cfg (Dict): Config dict to build backbone.
position_embedding_cfg (Dict): Config dict to build position embedding.
"""
def __init__(self, backbone: nn.Module, position_embedding: nn.Module) -> None:
super().__init__()
self.backbone = backbone
self.pos_embed = position_embedding
def forward(
self, tensor_list: NestedTensor
) -> Union[List[NestedTensor], List[torch.Tensor]]:
"""Forward function.
Args:
tensor_list (NestedTensor): NestedTensor wrapping the input tensor.
Returns:
[List[NestedTensor]: A list of feature map in NestedTensor format.
List[torch.Tensor]: A list of position encoding.
"""
xs = self.backbone(tensor_list)
out: List[NestedTensor] = []
pos = []
for layer_idx, x in xs.items():
out.append(x)
# position encoding
pos.append(self.pos_embed(x).to(x.tensors.dtype))
return out, pos
def forward_pos_embed_only(self, x: NestedTensor) -> torch.Tensor:
"""Forward function for position embedding only. This is used to generate additional layer
Args:
x (NestedTensor): NestedTensor wrapping the input tensor.
Returns:
[List[torch.Tensor]: A list of position encoding.
"""
return self.pos_embed(x)
@BACKBONES.register_module()
class SwinWrapper(nn.Module):
"""A wrapper for swin transformer.
Args:
backbone_cfg Union[Dict, str]: Config dict to build backbone. If given a str name, we
will call `get_swin_config` to get the config dict.
dilation (bool): Whether to use dilation in stage 4.
position_embedding_cfg (Dict): Config dict to build position embedding.
lr_backbone (float): Learning rate of the backbone.
return_interm_layers (List[int]): Which layers to return.
backbone_freeze_keywords (List[str]): List of keywords to freeze the backbone.
use_checkpoint (bool): Whether to use checkpoint. Default: False.
ckpt_path (str): Checkpoint path. Default: None.
use_pretrained_ckpt (bool): Whether to use pretrained checkpoint. Default: True.
"""
def __init__(
self,
backbone_cfg: Union[Dict, str],
dilation: bool,
position_embedding_cfg: Dict,
lr_backbone: float,
return_interm_indices: List[int],
backbone_freeze_keywords: List[str],
use_checkpoint: bool = False,
backbone_ckpt_path: str = None,
) -> None:
super(SwinWrapper, self).__init__()
pos_embedding = build_position_embedding(position_embedding_cfg)
train_backbone = lr_backbone > 0
if not train_backbone:
raise ValueError("Please set lr_backbone > 0")
assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
# build backbone
if isinstance(backbone_cfg, str):
assert (
backbone_cfg
in backbone_cfg
in [
"swin_T_224_1k",
"swin_B_224_22k",
"swin_B_384_22k",
"swin_L_224_22k",
"swin_L_384_22k",
]
)
pretrain_img_size = int(backbone_cfg.split("_")[-2])
backbone_cfg = get_swin_config(
backbone_cfg,
pretrain_img_size,
out_indices=tuple(return_interm_indices),
dilation=dilation,
use_checkpoint=use_checkpoint,
)
backbone = build_backbone(backbone_cfg)
# freeze some layers
if backbone_freeze_keywords is not None:
for name, parameter in backbone.named_parameters():
for keyword in backbone_freeze_keywords:
if keyword in name:
parameter.requires_grad_(False)
break
# load checkpoint
if backbone_ckpt_path is not None:
print("Loading backbone checkpoint from {}".format(backbone_ckpt_path))
checkpoint = torch.load(backbone_ckpt_path, map_location="cpu")["model"]
from collections import OrderedDict
def key_select_function(keyname):
if "head" in keyname:
return False
if dilation and "layers.3" in keyname:
return False
return True
_tmp_st = OrderedDict(
{
k: v
for k, v in clean_state_dict(checkpoint).items()
if key_select_function(k)
}
)
_tmp_st_output = backbone.load_state_dict(_tmp_st, strict=False)
print(str(_tmp_st_output))
bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
assert len(bb_num_channels) == len(
return_interm_indices
), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
model = Joiner(backbone, pos_embedding)
model.num_channels = bb_num_channels
self.num_channels = bb_num_channels
self.model = model
def forward(
self, tensor_list: NestedTensor
) -> Union[List[NestedTensor], List[torch.Tensor]]:
"""Forward function.
Args:
tensor_list (NestedTensor): NestedTensor wrapping the input tensor.
Returns:
[List[NestedTensor]: A list of feature map in NestedTensor format.
List[torch.Tensor]: A list of position encoding.
"""
return self.model(tensor_list)
def forward_pos_embed_only(self, tensor_list: NestedTensor) -> torch.Tensor:
"""Forward function to get position embedding only.
Args:
tensor_list (NestedTensor): NestedTensor wrapping the input tensor.
Returns:
torch.Tensor: Position embedding.
"""
return self.model.forward_pos_embed_only(tensor_list)
def get_swin_config(modelname: str, pretrain_img_size: Tuple[int, int], **kw):
"""Get swin config dict.
Args:
modelname (str): Name of the model.
pretrain_img_size (Tuple[int, int]): Image size of the pretrain model.
kw (Dict): Other key word arguments.
Returns:
Dict: Config dict.
str: Path to the pretrained checkpoint.
"""
assert modelname in [
"swin_T_224_1k",
"swin_B_224_22k",
"swin_B_384_22k",
"swin_L_224_22k",
"swin_L_384_22k",
]
model_para_dict = {
"swin_T_224_1k": dict(
type="SwinTransformer",
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
),
"swin_B_224_22k": dict(
type="SwinTransformer",
embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=7,
),
"swin_B_384_22k": dict(
type="SwinTransformer",
embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=12,
),
"swin_L_224_22k": dict(
type="SwinTransformer",
embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=7,
),
"swin_L_384_22k": dict(
type="SwinTransformer",
embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=12,
),
}
kw_cgf = model_para_dict[modelname]
kw_cgf.update(kw)
kw_cgf.update(dict(pretrain_img_size=pretrain_img_size))
return kw_cgf
|