File size: 6,769 Bytes
0ff4721 42daec3 75cdbf7 42daec3 0ff4721 42daec3 75cdbf7 42daec3 75cdbf7 42daec3 02b4abe 42daec3 02b4abe 42daec3 02b4abe 42daec3 02b4abe 42daec3 75cdbf7 42daec3 75cdbf7 42daec3 75cdbf7 42daec3 02b4abe 42daec3 0ff4721 42daec3 0ff4721 42daec3 0ff4721 42daec3 02b4abe 42daec3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
import os
import yt_dlp
import subprocess
from youtube_transcript_api import YouTubeTranscriptApi
import re
import torch
from PIL import Image
from sentence_transformers import SentenceTransformer, util
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import google.generativeai as genai
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.gemini import GeminiMultiModal
# Ensure you have the necessary dependencies installed:
# pip install streamlit yt-dlp youtube_transcript_api torch pillow sentence-transformers scikit-learn google-generativeai llama-index
# Function to extract video ID from URL
def get_youtube_video_id(url):
pattern = r'(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|.*[?&]v=)|youtu\.be\/)([^&\n]{11})'
match = re.match(pattern, url)
return match.group(1) if match else None
# Function to download video and extract frames
def video_to_images(video_url, output_folder):
os.makedirs(output_folder, exist_ok=True)
ydl_opts = {
'outtmpl': os.path.join(output_folder, 'video.%(ext)s'),
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
'noplaylist': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([video_url])
video_filepath = os.path.join(output_folder, 'video.mp4')
if not os.path.exists(video_filepath):
return "Error: Video file was not downloaded successfully."
frame_output_pattern = os.path.join(output_folder, 'frame_%04d.png')
ffmpeg_command = [
'ffmpeg', '-i', video_filepath, '-vf', 'fps=0.2', frame_output_pattern
]
subprocess.run(ffmpeg_command)
return "Frames extracted successfully."
# Function to extract transcript
def extract_youtube_transcript(video_url):
video_id = get_youtube_video_id(video_url)
if not video_id:
return "Invalid YouTube video URL."
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = ' '.join([entry['text'] for entry in transcript])
return transcript_text
except Exception as e:
return f"Error: {str(e)}"
# Function to find top 3 similar images
def find_top_3_similar_images(query_text, image_directory):
model = SentenceTransformer('clip-ViT-B-32', 'clean_up_tokenization_spaces' == False)
query_feature = model.encode([query_text]).tolist()[0]
image_features = {}
for filename in os.listdir(image_directory):
if filename.endswith((".jpg", ".png")):
image_path = os.path.join(image_directory, filename)
image = Image.open(image_path)
image_feature = model.encode(image).tolist()
image_features[filename] = image_feature
similarities = []
for filename, feature in image_features.items():
similarity = util.cos_sim(query_feature, feature).item()
similarities.append((filename, similarity))
similarities.sort(key=lambda x: x[1], reverse=True)
top_3_images = [x[0] for x in similarities[:3]]
return top_3_images
# Function to get top chunks
def get_top_chunks(text, user_query, top_n=6):
def chunk_text(text, chunk_size=100):
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
chunks = chunk_text(text)
model = SentenceTransformer("all-MiniLM-L6-v2", 'clean_up_tokenization_spaces' == False)
chunk_embeddings = model.encode(chunks)
query_embedding = model.encode([user_query])
similarities = cosine_similarity(query_embedding, chunk_embeddings).flatten()
top_indices = np.argsort(similarities)[-top_n:][::-1]
top_chunks = [chunks[i] for i in top_indices]
return top_chunks
# Function to get LLM answer
def get_llm_answer(query, context, images):
GOOGLE_API_TOKEN = "YOUR_GOOGLE_API_TOKEN" # Replace with your actual token
genai.configure(api_key=GOOGLE_API_TOKEN)
gemini_mm_llm = GeminiMultiModal(
model_name="models/gemini-1.5-flash",
api_key=GOOGLE_API_TOKEN,
temperature=0.7,
max_output_tokens=1500,
)
qa_tmpl_str = """
Based on the provided information, including relevant images and retrieved context from the video,
accurately and precisely answer the query without any additional prior knowledge.
---------------------
Context: {context_str}
---------------------
Images: {image_list}
---------------------
Query: {query_str}
Answer:
"""
image_documents = SimpleDirectoryReader(input_files=images).load_data()
response = gemini_mm_llm.complete(
prompt=qa_tmpl_str.format(
query_str=query,
context_str=context,
image_list=", ".join(images)
),
image_documents=image_documents,
)
return response.text
# Streamlit UI
st.title("YouTube Video Analysis")
url = st.text_input("Enter YouTube URL")
query = st.text_input("Enter your query")
if url and query:
if st.button("Extract Matched Images"):
with st.spinner("Processing..."):
output_folder = "video_data"
result = video_to_images(url, output_folder)
st.write(result)
if "successfully" in result:
top_images = find_top_3_similar_images(query, output_folder)
st.write("Top 3 matched images:")
for img in top_images:
st.image(os.path.join(output_folder, img))
if st.button("Extract Matched Text Chunks"):
with st.spinner("Processing..."):
transcript = extract_youtube_transcript(url)
if not transcript.startswith("Error"):
top_chunks = get_top_chunks(transcript, query)
st.write("Top matched text chunks:")
for chunk in top_chunks:
st.write(chunk)
st.write("---")
else:
st.error(transcript)
if st.button("Get Precise Answer"):
with st.spinner("Processing..."):
transcript = extract_youtube_transcript(url)
if not transcript.startswith("Error"):
top_chunks = get_top_chunks(transcript, query)
output_folder = "video_data"
top_images = find_top_3_similar_images(query, output_folder)
image_paths = [os.path.join(output_folder, img) for img in top_images]
answer = get_llm_answer(query, "\n".join(top_chunks), image_paths)
st.write("LLM Answer:")
st.write(answer)
else:
st.error(transcript)
return sections[best_match] |