Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
| 4 |
-
from PIL import Image
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
from openai import OpenAI
|
| 7 |
|
| 8 |
# 初始化模型
|
|
@@ -11,13 +12,77 @@ clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
|
| 11 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 12 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 13 |
|
| 14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def analyze_images(image_a, image_b, api_key):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# BLIP生成描述
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
caption = blip_model.generate(**inputs)
|
| 20 |
-
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
| 21 |
|
| 22 |
# CLIP特征提取
|
| 23 |
def extract_features(image):
|
|
@@ -25,24 +90,11 @@ def analyze_images(image_a, image_b, api_key):
|
|
| 25 |
features = clip_model.get_image_features(**inputs)
|
| 26 |
return features.detach().numpy()
|
| 27 |
|
| 28 |
-
# 图像已经是 PIL.Image 对象,直接处理
|
| 29 |
-
img_a = image_a.convert("RGB")
|
| 30 |
-
img_b = image_b.convert("RGB")
|
| 31 |
-
|
| 32 |
-
# 生成描述
|
| 33 |
-
caption_a = generate_caption(img_a)
|
| 34 |
-
caption_b = generate_caption(img_b)
|
| 35 |
-
|
| 36 |
-
# 提取特征
|
| 37 |
features_a = extract_features(img_a)
|
| 38 |
features_b = extract_features(img_b)
|
| 39 |
-
|
| 40 |
-
# 计算嵌入相似性
|
| 41 |
-
cosine_similarity = np.dot(features_a, features_b.T) / (np.linalg.norm(features_a) * np.linalg.norm(features_b))
|
| 42 |
latent_diff = np.abs(features_a - features_b).tolist()
|
| 43 |
|
| 44 |
-
# 调用
|
| 45 |
-
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
| 46 |
gpt_response = client.chat.completions.create(
|
| 47 |
model="deepseek-chat",
|
| 48 |
messages=[
|
|
@@ -51,45 +103,79 @@ def analyze_images(image_a, image_b, api_key):
|
|
| 51 |
],
|
| 52 |
stream=False
|
| 53 |
)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
#
|
|
|
|
|
|
|
| 57 |
return {
|
| 58 |
"caption_a": caption_a,
|
| 59 |
"caption_b": caption_b,
|
| 60 |
-
"
|
| 61 |
-
"
|
| 62 |
-
"
|
|
|
|
| 63 |
}
|
| 64 |
|
| 65 |
-
#
|
| 66 |
with gr.Blocks() as demo:
|
| 67 |
-
gr.Markdown("#
|
| 68 |
-
|
|
|
|
| 69 |
with gr.Row():
|
| 70 |
with gr.Column():
|
| 71 |
-
image_a = gr.Image(label="图片A", type="pil")
|
| 72 |
with gr.Column():
|
| 73 |
-
image_b = gr.Image(label="图片B", type="pil")
|
| 74 |
-
|
| 75 |
-
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 DeepSeek API Key", type="password")
|
| 76 |
-
|
| 77 |
analyze_button = gr.Button("分析图片")
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# 分析逻辑
|
| 85 |
def process_analysis(img_a, img_b, api_key):
|
| 86 |
results = analyze_images(img_a, img_b, api_key)
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
analyze_button.click(
|
| 90 |
fn=process_analysis,
|
| 91 |
inputs=[image_a, image_b, api_key_input],
|
| 92 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import CLIPProcessor, CLIPModel, BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
from PIL import Image, ImageChops
|
| 5 |
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
from openai import OpenAI
|
| 8 |
|
| 9 |
# 初始化模型
|
|
|
|
| 12 |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 13 |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 14 |
|
| 15 |
+
# 图像处理函数
|
| 16 |
+
def compute_difference_images(img_a, img_b):
|
| 17 |
+
# 线稿提取
|
| 18 |
+
def extract_sketch(image):
|
| 19 |
+
grayscale = image.convert("L")
|
| 20 |
+
inverted = ImageChops.invert(grayscale)
|
| 21 |
+
sketch = ImageChops.screen(grayscale, inverted)
|
| 22 |
+
return sketch
|
| 23 |
+
|
| 24 |
+
# 法向量图像(模拟法向量处理为简单的边缘增强)
|
| 25 |
+
def compute_normal_map(image):
|
| 26 |
+
edges = image.filter(ImageFilter.FIND_EDGES)
|
| 27 |
+
return edges
|
| 28 |
+
|
| 29 |
+
# 图像混合差异
|
| 30 |
+
diff_overlay = ImageChops.difference(img_a, img_b)
|
| 31 |
+
|
| 32 |
+
return {
|
| 33 |
+
"original_a": img_a,
|
| 34 |
+
"original_b": img_b,
|
| 35 |
+
"sketch_a": extract_sketch(img_a),
|
| 36 |
+
"sketch_b": extract_sketch(img_b),
|
| 37 |
+
"normal_a": compute_normal_map(img_a),
|
| 38 |
+
"normal_b": compute_normal_map(img_b),
|
| 39 |
+
"diff_overlay": diff_overlay
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# BLIP生成更详尽描述
|
| 43 |
+
def generate_detailed_caption(image):
|
| 44 |
+
inputs = blip_processor(image, return_tensors="pt")
|
| 45 |
+
caption = blip_model.generate(**inputs, max_length=128, num_beams=5, no_repeat_ngram_size=2)
|
| 46 |
+
return blip_processor.decode(caption[0], skip_special_tokens=True)
|
| 47 |
+
|
| 48 |
+
# 特征差异可视化
|
| 49 |
+
def plot_feature_differences(latent_diff):
|
| 50 |
+
diff_magnitude = [abs(x) for x in latent_diff[0]]
|
| 51 |
+
indices = range(len(diff_magnitude))
|
| 52 |
+
|
| 53 |
+
# 柱状图
|
| 54 |
+
plt.figure(figsize=(8, 4))
|
| 55 |
+
plt.bar(indices, diff_magnitude, alpha=0.7)
|
| 56 |
+
plt.xlabel("Feature Index")
|
| 57 |
+
plt.ylabel("Magnitude of Difference")
|
| 58 |
+
plt.title("Feature Differences (Bar Chart)")
|
| 59 |
+
bar_chart_path = "bar_chart.png"
|
| 60 |
+
plt.savefig(bar_chart_path)
|
| 61 |
+
plt.close()
|
| 62 |
+
|
| 63 |
+
# 饼图
|
| 64 |
+
plt.figure(figsize=(6, 6))
|
| 65 |
+
plt.pie(diff_magnitude[:10], labels=range(10), autopct="%1.1f%%", startangle=140)
|
| 66 |
+
plt.title("Top 10 Feature Differences (Pie Chart)")
|
| 67 |
+
pie_chart_path = "pie_chart.png"
|
| 68 |
+
plt.savefig(pie_chart_path)
|
| 69 |
+
plt.close()
|
| 70 |
+
|
| 71 |
+
return bar_chart_path, pie_chart_path
|
| 72 |
+
|
| 73 |
+
# 分析函数
|
| 74 |
def analyze_images(image_a, image_b, api_key):
|
| 75 |
+
# 调用 OpenAI 客户端
|
| 76 |
+
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
| 77 |
+
|
| 78 |
+
# 图像差异处理
|
| 79 |
+
img_a = image_a.convert("RGB")
|
| 80 |
+
img_b = image_b.convert("RGB")
|
| 81 |
+
images_diff = compute_difference_images(img_a, img_b)
|
| 82 |
+
|
| 83 |
# BLIP生成描述
|
| 84 |
+
caption_a = generate_detailed_caption(img_a)
|
| 85 |
+
caption_b = generate_detailed_caption(img_b)
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# CLIP特征提取
|
| 88 |
def extract_features(image):
|
|
|
|
| 90 |
features = clip_model.get_image_features(**inputs)
|
| 91 |
return features.detach().numpy()
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
features_a = extract_features(img_a)
|
| 94 |
features_b = extract_features(img_b)
|
|
|
|
|
|
|
|
|
|
| 95 |
latent_diff = np.abs(features_a - features_b).tolist()
|
| 96 |
|
| 97 |
+
# 调用 GPT 获取更详细描述
|
|
|
|
| 98 |
gpt_response = client.chat.completions.create(
|
| 99 |
model="deepseek-chat",
|
| 100 |
messages=[
|
|
|
|
| 103 |
],
|
| 104 |
stream=False
|
| 105 |
)
|
| 106 |
+
text_analysis = gpt_response.choices[0].message.content.strip()
|
| 107 |
+
|
| 108 |
+
# 可视化特征差异
|
| 109 |
+
bar_chart_path, pie_chart_path = plot_feature_differences(latent_diff)
|
| 110 |
+
|
| 111 |
return {
|
| 112 |
"caption_a": caption_a,
|
| 113 |
"caption_b": caption_b,
|
| 114 |
+
"text_analysis": text_analysis,
|
| 115 |
+
"images_diff": images_diff,
|
| 116 |
+
"bar_chart": bar_chart_path,
|
| 117 |
+
"pie_chart": pie_chart_path
|
| 118 |
}
|
| 119 |
|
| 120 |
+
# Gradio界面
|
| 121 |
with gr.Blocks() as demo:
|
| 122 |
+
gr.Markdown("# 图像对比分析工具")
|
| 123 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="输入您的 DeepSeek API Key", type="password")
|
| 124 |
+
|
| 125 |
with gr.Row():
|
| 126 |
with gr.Column():
|
| 127 |
+
image_a = gr.Image(label="图片A", type="pil")
|
| 128 |
with gr.Column():
|
| 129 |
+
image_b = gr.Image(label="图片B", type="pil")
|
| 130 |
+
|
|
|
|
|
|
|
| 131 |
analyze_button = gr.Button("分析图片")
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
gr.Markdown("## 图像差异")
|
| 135 |
+
result_diff = gr.Gallery(label="混合差异图像").style(grid=3)
|
| 136 |
+
|
| 137 |
+
with gr.Row():
|
| 138 |
+
result_caption_a = gr.Textbox(label="图片A描述", interactive=False)
|
| 139 |
+
result_caption_b = gr.Textbox(label="图片B描述", interactive=False)
|
| 140 |
+
|
| 141 |
+
with gr.Row():
|
| 142 |
+
gr.Markdown("## 差异分析")
|
| 143 |
+
result_text_analysis = gr.Textbox(label="详细分析", interactive=False, lines=5)
|
| 144 |
+
result_bar_chart = gr.Image(label="特征差异柱状图")
|
| 145 |
+
result_pie_chart = gr.Image(label="特征差异饼图")
|
| 146 |
+
|
| 147 |
# 分析逻辑
|
| 148 |
def process_analysis(img_a, img_b, api_key):
|
| 149 |
results = analyze_images(img_a, img_b, api_key)
|
| 150 |
+
diff_images = [
|
| 151 |
+
("Original A", results["images_diff"]["original_a"]),
|
| 152 |
+
("Original B", results["images_diff"]["original_b"]),
|
| 153 |
+
("Sketch A", results["images_diff"]["sketch_a"]),
|
| 154 |
+
("Sketch B", results["images_diff"]["sketch_b"]),
|
| 155 |
+
("Normal A", results["images_diff"]["normal_a"]),
|
| 156 |
+
("Normal B", results["images_diff"]["normal_b"]),
|
| 157 |
+
("Difference Overlay", results["images_diff"]["diff_overlay"]),
|
| 158 |
+
]
|
| 159 |
+
return (
|
| 160 |
+
diff_images,
|
| 161 |
+
results["caption_a"],
|
| 162 |
+
results["caption_b"],
|
| 163 |
+
results["text_analysis"],
|
| 164 |
+
results["bar_chart"],
|
| 165 |
+
results["pie_chart"]
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
analyze_button.click(
|
| 169 |
fn=process_analysis,
|
| 170 |
inputs=[image_a, image_b, api_key_input],
|
| 171 |
+
outputs=[
|
| 172 |
+
result_diff,
|
| 173 |
+
result_caption_a,
|
| 174 |
+
result_caption_b,
|
| 175 |
+
result_text_analysis,
|
| 176 |
+
result_bar_chart,
|
| 177 |
+
result_pie_chart
|
| 178 |
+
]
|
| 179 |
)
|
| 180 |
|
| 181 |
demo.launch()
|