File size: 5,686 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
from datetime import date
import sys
from pathlib import Path

# Add src to path if needed
sys.path.append(str(Path(__file__).parent.parent))

from calendar_scraper.adapters.nasdaq import NasdaqAdapter
from db.local_database import LocalDatabase, DatabaseEntry, DataType

def get_events(_date:date):
    adapter = NasdaqAdapter()
    earnings = adapter.get_earning_events()
    ipos = adapter.get_ipo_events(_date.strftime("%Y-%m"))
    splits = adapter.get_stock_split_events(_date.strftime("%Y-%m-%d"))
    economic = adapter.get_economic_events(_date.strftime("%Y-%m-%d"))
    dividends = adapter.get_dividend_events(_date.strftime("%Y-%m-%d"))
    return {
        "earnings": earnings,
        "ipos": ipos,
        "splits": splits,
        "economic": economic,
        "dividends": dividends
    }

def _map_event_to_entry(event, event_type: str, _date: date) -> DatabaseEntry:
    """Map a calendar event object to a DatabaseEntry"""
    
    if event_type == "earnings":
        # EarningsEvent(date, time, company, ticker, eps, revenue, market_cap)
        return DatabaseEntry(
            date=_date.isoformat(),
            data_type=DataType.EARNINGS.value,
            ticker=event.ticker,
            data={
                'event_type': 'earnings',
                'time': event.time,
                'company': event.company,
                'eps': event.eps,
                'revenue': event.revenue,
                'market_cap': event.market_cap,
                'execution_date': event.date # Store the actual event date
            },
            metadata={'source': 'nasdaq_calendar'}
        )
    elif event_type == "ipos":
        # IPOEvent(date, company, ticker, exchange, shares, price_range, market_cap, expected_to_trade)
        return DatabaseEntry(
            date=_date.isoformat(),
            data_type=DataType.IPO.value,
            ticker=event.ticker,
            data={
                'event_type': 'ipo',
                'company': event.company,
                'exchange': event.exchange,
                'shares': event.shares,
                'price_range': event.price_range,
                'market_cap': event.market_cap,
                'expected_to_trade': event.expected_to_trade,
                'execution_date': str(event.date)
            },
            metadata={'source': 'nasdaq_calendar'}
        )
    elif event_type == "splits":
        # StockSplitEvent(date, company, ticker, ratio, ...)
        return DatabaseEntry(
            date=_date.isoformat(),
            data_type=DataType.STOCK_SPLIT.value,
            ticker=event.ticker,
            data={
                'event_type': 'stock_split',
                'company': event.company,
                'ratio': event.ratio,
                'execution_date': str(event.date)
            },
            metadata={'source': 'nasdaq_calendar'}
        )
    elif event_type == "economic":
        # EconomicEvent(date, time, country, importance, event, actual, forecast, previous)
        # Use country as ticker for economic events
        ticker = event.country.upper().replace(' ', '_') if event.country else "GLOBAL"
        return DatabaseEntry(
            date=_date.isoformat(),
            data_type=DataType.ECONOMIC_EVENTS.value,
            ticker=ticker,
            data={
                'event_type': 'economic',
                'time': event.time,
                'importance': event.importance,
                'event': event.event,
                'actual': event.actual,
                'forecast': event.forecast,
                'previous': event.previous,
                'execution_date': str(event.date)
            },
            metadata={'source': 'nasdaq_calendar'}
        )
    elif event_type == "dividends":
        # DividendEvent(date, company, ticker, dividend_rate, ...)
        return DatabaseEntry(
            date=_date.isoformat(),
            data_type=DataType.DIVIDENDS.value,
            ticker=event.ticker,
            data={
                'event_type': 'dividend',
                'company': event.company,
                'dividend_rate': event.dividend_rate,
                'execution_date': str(event.date)
            },
            metadata={'source': 'nasdaq_calendar'}
        )
    return None

def save_events_to_db(events_dict: dict, _date: date):
    """Save all fetched events to the database"""
    db = LocalDatabase()
    all_entries = []
    
    print(f"Processing events for database saving...")
    
    for event_type, events in events_dict.items():
        if not events:
            continue
            
        print(f"  - Processing {len(events)} {event_type} events...")
        for event in events:
            try:
                entry = _map_event_to_entry(event, event_type, _date)
                if entry:
                    all_entries.append(entry)
            except Exception as e:
                print(f"Error mapping {event_type} event: {e}")
    
    if all_entries:
        print(f"Saving {len(all_entries)} entries to database...")
        saved_count = db.save_batch(all_entries, expiry_days=30)
        print(f"Successfully saved {saved_count} events to database.")
    else:
        print("No events to save.")

if __name__ == "__main__":
    today = date.today()
    print(f"Fetching events for {today}...")
    events = get_events(today)
    
    print(f"Earnings Events: {len(events['earnings'])}")
    print(f"IPO Events: {len(events['ipos'])}")
    print(f"Stock Split Events: {len(events['splits'])}")
    print(f"Economic Events: {len(events['economic'])}")
    print(f"Dividend Events: {len(events['dividends'])}")
    
    save_events_to_db(events, today)