File size: 20,796 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
"""
Module-specific adapters for integrating the local database
with calendar_scraper, fundamental_analysis, and news_scraper
"""

from datetime import datetime
from typing import Dict, Any, List, Optional
from pathlib import Path
import sys

# Add src to path if needed
sys.path.append(str(Path(__file__).parent.parent))

from db.local_database import LocalDatabase, DatabaseEntry, DataType


class CalendarAdapter:
    """
    Adapter for calendar_scraper module
    Handles earnings_events and economic_events
    """
    
    def __init__(self, db: Optional[LocalDatabase] = None):
        self.db = db or LocalDatabase()
    
### EARINGS ###

    def save_earnings_event(self, date: str, ticker: str, event_data: Dict[str, Any],
                           expiry_days: int = 30) -> bool:
        """
        Save earnings event to database
        
        Args:
            date: Event date (YYYY-MM-DD)
            ticker: Stock ticker
            event_data: Event details (company, time, eps, revenue, market_cap)
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.EARNINGS.value,
            ticker=ticker.upper(),
            data={
                'event_type': 'earnings',
                **event_data
            },
            metadata={
                'source': 'calendar_scraper',
                'scraper': 'earnings'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)

    
    def get_earnings_events(self, ticker: str, date_from: str = None,
                           date_to: str = None) -> List[DatabaseEntry]:
        """Get earnings events for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.EARNINGS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for earnings events only
        return [e for e in entries if e.data.get('event_type') == 'earnings']
    
   ### ECONOMIC EVENTS ###
 
    def save_economic_event(self, date: str, event_data: Dict[str, Any],
                           expiry_days: int = 7) -> bool:
        """
        Save economic event to database
        
        Args:
            date: Event date (YYYY-MM-DD)
            event_data: Event details (country, importance, event, actual, forecast, previous)
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        # Use country as ticker for economic events
        ticker = event_data.get('country', 'GLOBAL').upper().replace(' ', '_')
        
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.ECONOMIC_EVENTS.value,
            ticker=ticker,
            data={
                'event_type': 'economic',
                **event_data
            },
            metadata={
                'source': 'calendar_scraper',
                'scraper': 'economic'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)

    
    def get_economic_events(self, country: str = None, date_from: str = None,
                           date_to: str = None) -> List[DatabaseEntry]:
        """Get economic events"""
        ticker = country.upper().replace(' ', '_') if country else None
        
        entries = self.db.query(
            ticker=ticker,
            data_type=DataType.ECONOMIC_EVENTS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for economic events only
        return [e for e in entries if e.data.get('event_type') == 'economic']


    ### DIVIDENDS ###
    def get_dividends_events(self, ticker: str, date_from: str = None,
                           date_to: str = None) -> List[DatabaseEntry]:
        """Get dividend events for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.DIVIDENDS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for earnings events only
        return [e for e in entries if e.data.get('event_type') == 'dividend']

    ### IPOs ###
    def get_ipo_events(self, ticker: str, date_from: str = None,
                            date_to: str = None) -> List[DatabaseEntry]:
          """Get ipo events for ticker"""
          entries = self.db.query(
                ticker=ticker.upper(),
                data_type=DataType.IPO.value,
                date_from=date_from,
                date_to=date_to
          )
          
          # Filter for earnings events only
          return [e for e in entries if e.data.get('event_type') == 'ipo']
    
    ## STOCK SPLITS ###
    def get_stock_split_events(self, ticker: str, date_from: str = None,
                            date_to: str = None) -> List[DatabaseEntry]:
          """Get stock split events for ticker"""
          entries = self.db.query(
                ticker=ticker.upper(),
                data_type=DataType.STOCK_SPLIT.value,
                date_from=date_from,
                date_to=date_to
          )
          
          # Filter for earnings events only
          return [e for e in entries if e.data.get('event_type') == 'stock_split']
      

class FundamentalAdapter:
    """
    Adapter for fundamental_analysis module
    Handles financial metrics and investment decisions
    """
    
    def __init__(self, db: Optional[LocalDatabase] = None):
        self.db = db or LocalDatabase()
    
    def save_financial_metrics(self, date: str, ticker: str, metrics: Dict[str, Any],
                              expiry_days: int = 1) -> bool:
        """
        Save financial metrics to database
        
        Args:
            date: Analysis date (YYYY-MM-DD)
            ticker: Stock ticker
            metrics: Financial metrics from calculator.py
            expiry_days: Data expiry in days (financial data changes daily)
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.FUNDAMENTAL.value,
            ticker=ticker.upper(),
            data={
                'analysis_type': 'metrics',
                'metrics': metrics
            },
            metadata={
                'source': 'fundamental_analysis',
                'module': 'calculator'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_investment_decision(self, date: str, ticker: str, decision: Dict[str, Any],
                                expiry_days: int = 1) -> bool:
        """
        Save investment decision to database
        
        Args:
            date: Decision date (YYYY-MM-DD)
            ticker: Stock ticker
            decision: Investment decision from decision_maker.py
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.FUNDAMENTAL.value,
            ticker=ticker.upper(),
            data={
                'analysis_type': 'decision',
                'recommendation': decision.get('recommendation'),
                'score': decision.get('final_score'),
                'confidence': decision.get('confidence'),
                'reasoning': decision.get('reasoning'),
                'key_metrics': decision.get('key_metrics'),
                'category_scores': decision.get('category_scores')
            },
            metadata={
                'source': 'fundamental_analysis',
                'module': 'decision_maker'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_sector_analysis(self, date: str, sector: str, analysis: Dict[str, Any],
                           expiry_days: int = 7) -> bool:
        """
        Save sector analysis to database
        
        Args:
            date: Analysis date (YYYY-MM-DD)
            sector: Sector name (e.g., "Technology")
            analysis: Sector comparison data
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        # Use sector name as ticker
        ticker = f"SECTOR_{sector.upper().replace(' ', '_')}"
        
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.FUNDAMENTAL.value,
            ticker=ticker,
            data={
                'analysis_type': 'sector',
                'sector': sector,
                **analysis
            },
            metadata={
                'source': 'fundamental_analysis',
                'module': 'sector_analyzer'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def get_financial_metrics(self, ticker: str, date: str = None) -> Optional[DatabaseEntry]:
        """Get latest financial metrics for ticker"""
        if date:
            return self.db.get(date, DataType.FUNDAMENTAL.value, ticker.upper())
        
        # Get most recent
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.FUNDAMENTAL.value,
            limit=1
        )
        
        return entries[0] if entries else None
    
    def get_investment_decisions(self, ticker: str, date_from: str = None,
                                date_to: str = None) -> List[DatabaseEntry]:
        """Get investment decision history for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.FUNDAMENTAL.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for decisions only
        return [e for e in entries if e.data.get('analysis_type') == 'decision']


class NewsAdapter:
    """
    Adapter for news_scraper module
    Handles news articles and sentiment analysis
    """
    
    def __init__(self, db: Optional[LocalDatabase] = None):
        self.db = db or LocalDatabase()
    
    def save_news_article(self, date: str, ticker: str, article: Dict[str, Any],
                         expiry_days: int = 30) -> bool:
        """
        Save news article to database
        
        Args:
            date: Article date (YYYY-MM-DD)
            ticker: Stock ticker
            article: Article data (title, content, source, url, etc.)
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.NEWS.value,
            ticker=ticker.upper(),
            data={
                'content_type': 'article',
                **article
            },
            metadata={
                'source': 'news_scraper',
                'scraper': article.get('source', 'unknown')
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_sentiment_analysis(self, date: str, ticker: str, sentiment: Dict[str, Any],
                               expiry_days: int = 7) -> bool:
        """
        Save sentiment analysis to database
        
        Args:
            date: Analysis date (YYYY-MM-DD)
            ticker: Stock ticker
            sentiment: Sentiment analysis results
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.NEWS.value,
            ticker=ticker.upper(),
            data={
                'content_type': 'sentiment',
                **sentiment
            },
            metadata={
                'source': 'news_scraper',
                'module': 'sentiment_analysis'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def get_news_articles(self, ticker: str, date_from: str = None,
                         date_to: str = None) -> List[DatabaseEntry]:
        """Get news articles for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.NEWS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for articles only
        return [e for e in entries if e.data.get('content_type') == 'article']
    
    def get_sentiment_history(self, ticker: str, date_from: str = None,
                             date_to: str = None) -> List[DatabaseEntry]:
        """Get sentiment analysis history for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.NEWS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for sentiment only
        return [e for e in entries if e.data.get('content_type') == 'sentiment']


class TechnicalAnalysisAdapter:
    """
    Adapter for technical analysis data
    Can be used for price data, indicators, signals
    """
    
    def __init__(self, db: Optional[LocalDatabase] = None):
        self.db = db or LocalDatabase()
    
    def save_technical_indicators(self, date: str, ticker: str, indicators: Dict[str, Any],
                                 expiry_days: int = 1) -> bool:
        """
        Save technical indicators to database
        
        Args:
            date: Analysis date (YYYY-MM-DD)
            ticker: Stock ticker
            indicators: Technical indicators (RSI, MACD, etc.)
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.TECHNICAL_ANALYSIS.value,
            ticker=ticker.upper(),
            data={
                'analysis_type': 'indicators',
                **indicators
            },
            metadata={
                'source': 'technical_analysis'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_trading_signal(self, date: str, ticker: str, signal: Dict[str, Any],
                          expiry_days: int = 1) -> bool:
        """
        Save trading signal to database
        
        Args:
            date: Signal date (YYYY-MM-DD)
            ticker: Stock ticker
            signal: Trading signal data
            expiry_days: Data expiry in days
            
        Returns:
            True if successful
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.TECHNICAL_ANALYSIS.value,
            ticker=ticker.upper(),
            data={
                'analysis_type': 'signal',
                **signal
            },
            metadata={
                'source': 'technical_analysis'
            }
        )
        
        return self.db.save(entry, expiry_days=expiry_days)
    
    def get_technical_indicators(self, ticker: str, date_from: str = None,
                                date_to: str = None) -> List[DatabaseEntry]:
        """Get technical indicators for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.TECHNICAL_ANALYSIS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for indicators only
        return [e for e in entries if e.data.get('analysis_type') == 'indicators']
    
    def get_trading_signals(self, ticker: str, date_from: str = None,
                           date_to: str = None) -> List[DatabaseEntry]:
        """Get trading signals for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.TECHNICAL_ANALYSIS.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for signals only
        return [e for e in entries if e.data.get('analysis_type') == 'signal']


# Additional methods for CalendarAdapter
def _add_calendar_methods():
    """Add missing methods to CalendarAdapter"""
    
    def save_ipo_event(self, date: str, ticker: str, event_data: Dict[str, Any],
                      expiry_days: int = 90) -> bool:
        """Save IPO event to database"""
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.IPO.value,
            ticker=ticker.upper(),
            data={
                'event_type': 'ipo',
                **event_data
            },
            metadata={
                'source': 'calendar_scraper',
                'scraper': 'ipo'
            }
        )
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_stock_split_event(self, date: str, ticker: str, event_data: Dict[str, Any],
                               expiry_days: int = 90) -> bool:
        """Save stock split event to database"""
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.STOCK_SPLIT.value,
            ticker=ticker.upper(),
            data={
                'event_type': 'stock_split',
                **event_data
            },
            metadata={
                'source': 'calendar_scraper',
                'scraper': 'stock_split'
            }
        )
        return self.db.save(entry, expiry_days=expiry_days)
    
    def save_dividend_event(self, date: str, ticker: str, event_data: Dict[str, Any],
                           expiry_days: int = 90) -> bool:
        """Save dividend event to database"""
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.DIVIDENDS.value,
            ticker=ticker.upper(),
            data={
                'event_type': 'dividend',
                **event_data
            },
            metadata={
                'source': 'calendar_scraper',
                'scraper': 'dividend'
            }
        )
        return self.db.save(entry, expiry_days=expiry_days)
    
    # Add methods to CalendarAdapter class
    CalendarAdapter.save_ipo_event = save_ipo_event
    CalendarAdapter.save_stock_split_event = save_stock_split_event
    CalendarAdapter.save_dividend_event = save_dividend_event

_add_calendar_methods()


# Additional method for FundamentalAdapter
def _add_fundamental_methods():
    """Add missing methods to FundamentalAdapter"""
    
    def save_fundamental_analysis(self, date: str, ticker: str, analysis_data: Dict[str, Any],
                                  expiry_days: int = 30) -> bool:
        """
        Save complete fundamental analysis to database
        Includes last_processed_datetime for tracking
        """
        entry = DatabaseEntry(
            date=date,
            data_type=DataType.FUNDAMENTAL.value,
            ticker=ticker.upper(),
            data={
                'analysis_type': 'complete',
                'last_processed_datetime': datetime.now().isoformat(),
                **analysis_data
            },
            metadata={
                'source': 'fundamental_analysis',
                'module': 'complete_analysis'
            }
        )
        return self.db.save(entry, expiry_days=expiry_days)
    
    def get_fundamental_analysis(self, ticker: str, date_from: str = None,
                                date_to: str = None) -> List[DatabaseEntry]:
        """Get fundamental analysis for ticker"""
        entries = self.db.query(
            ticker=ticker.upper(),
            data_type=DataType.FUNDAMENTAL.value,
            date_from=date_from,
            date_to=date_to
        )
        
        # Filter for complete analysis
        return [e for e in entries if e.data.get('analysis_type') == 'complete']
    
    # Add methods to FundamentalAdapter class
    FundamentalAdapter.save_fundamental_analysis = save_fundamental_analysis
    FundamentalAdapter.get_fundamental_analysis = get_fundamental_analysis

_add_fundamental_methods()


# Convenience functions for quick access
def get_calendar_adapter(db: Optional[LocalDatabase] = None) -> CalendarAdapter:
    """Get calendar adapter instance"""
    return CalendarAdapter(db)


def get_fundamental_adapter(db: Optional[LocalDatabase] = None) -> FundamentalAdapter:
    """Get fundamental analysis adapter instance"""
    return FundamentalAdapter(db)


def get_news_adapter(db: Optional[LocalDatabase] = None) -> NewsAdapter:
    """Get news adapter instance"""
    return NewsAdapter(db)


def get_technical_adapter(db: Optional[LocalDatabase] = None) -> TechnicalAnalysisAdapter:
    """Get technical analysis adapter instance"""
    return TechnicalAnalysisAdapter(db)