File size: 13,326 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
"""
Example usage of the Local Database system
Demonstrates integration with all modules
"""

from datetime import datetime, timedelta
from db.local_database import LocalDatabase, DatabaseEntry, DataType
from db.adapters import (
    CalendarAdapter, 
    FundamentalAdapter, 
    NewsAdapter, 
    TechnicalAnalysisAdapter
)


def example_calendar_scraper():
    """Example: Save and retrieve calendar events"""
    print("\n" + "="*60)
    print("EXAMPLE 1: Calendar Scraper Integration")
    print("="*60)
    
    adapter = CalendarAdapter()
    today = datetime.now().date().isoformat()
    
    # Save earnings event
    print("\nπŸ“… Saving earnings event for AAPL...")
    earnings_data = {
        'company': 'Apple Inc.',
        'time': 'After Market Close',
        'eps_forecast': 1.54,
        'last_year_eps': 1.46,
        'revenue': '89.5B',
        'market_cap': '2.8T'
    }
    
    success = adapter.save_earnings_event(
        date=today,
        ticker='AAPL',
        event_data=earnings_data,
        expiry_days=30
    )
    print(f"βœ“ Saved: {success}")
    
    # Save economic event
    print("\n🌍 Saving economic event...")
    economic_data = {
        'country': 'United States',
        'importance': 'high',
        'event': 'Non-Farm Payrolls',
        'actual': 199000,
        'forecast': 180000,
        'previous': 150000
    }
    
    success = adapter.save_economic_event(
        date=today,
        event_data=economic_data,
        expiry_days=7
    )
    print(f"βœ“ Saved: {success}")
    
    # Retrieve earnings events
    print("\nπŸ“‹ Retrieving AAPL earnings events...")
    events = adapter.get_earnings_events('AAPL')
    print(f"Found {len(events)} events")
    
    for event in events:
        print(f"  Date: {event.date}, Company: {event.data.get('company')}")


def example_fundamental_analysis():
    """Example: Save and retrieve fundamental analysis"""
    print("\n" + "="*60)
    print("EXAMPLE 2: Fundamental Analysis Integration")
    print("="*60)
    
    adapter = FundamentalAdapter()
    today = datetime.now().date().isoformat()
    
    # Save financial metrics
    print("\nπŸ“Š Saving financial metrics for GOOGL...")
    metrics = {
        'market_cap': 1850000000000,
        'pe_ratio': 28.5,
        'fcf_yield': 4.08,
        'roic': 0.32,
        'revenue_growth': 0.208,
        'eps_growth': 0.25,
        'net_margin': 0.23,
        'roe': 0.28
    }
    
    success = adapter.save_financial_metrics(
        date=today,
        ticker='GOOGL',
        metrics=metrics,
        expiry_days=1
    )
    print(f"βœ“ Saved: {success}")
    
    # Save investment decision
    print("\n🎯 Saving investment decision for GOOGL...")
    decision = {
        'recommendation': 'BUY',
        'final_score': 0.67,
        'confidence': 1.0,
        'reasoning': [
            'Strong FCF yield of 4.08%',
            'Excellent ROIC of 32%',
            'High revenue growth of 20.8%'
        ],
        'key_metrics': {
            'fcf_yield': 4.08,
            'roic': 32.0,
            'revenue_growth': 20.8
        },
        'category_scores': {
            'fcf_yield': 0.85,
            'roic': 0.90,
            'growth': 0.80
        }
    }
    
    success = adapter.save_investment_decision(
        date=today,
        ticker='GOOGL',
        decision=decision,
        expiry_days=1
    )
    print(f"βœ“ Saved: {success}")
    
    # Retrieve latest metrics
    print("\nπŸ“ˆ Retrieving latest metrics for GOOGL...")
    entry = adapter.get_financial_metrics('GOOGL')
    if entry:
        print(f"  Date: {entry.date}")
        # Check if this is a metrics entry or decision entry
        if 'metrics' in entry.data:
            metrics_data = entry.data['metrics']
            print(f"  P/E Ratio: {metrics_data.get('pe_ratio')}")
            print(f"  FCF Yield: {metrics_data.get('fcf_yield')}%")
        elif entry.data.get('analysis_type') == 'decision':
            print(f"  Recommendation: {entry.data.get('recommendation')}")
            print(f"  Score: {entry.data.get('score')}")
        else:
            print(f"  Analysis Type: {entry.data.get('analysis_type', 'unknown')}")


def example_news_scraper():
    """Example: Save and retrieve news articles"""
    print("\n" + "="*60)
    print("EXAMPLE 3: News Scraper Integration")
    print("="*60)
    
    adapter = NewsAdapter()
    today = datetime.now().date().isoformat()
    
    # Save news article
    print("\nπŸ“° Saving news article for TSLA...")
    article = {
        'title': 'Tesla Announces Record Q4 Deliveries',
        'content': 'Tesla reported record vehicle deliveries...',
        'source': 'Bloomberg',
        'url': 'https://example.com/article',
        'author': 'John Doe'
    }
    
    success = adapter.save_news_article(
        date=today,
        ticker='TSLA',
        article=article,
        expiry_days=30
    )
    print(f"βœ“ Saved: {success}")
    
    # Save sentiment analysis
    print("\n😊 Saving sentiment analysis for TSLA...")
    sentiment = {
        'model': 'finbert-tone',
        'sentiment': 'positive',
        'score': 0.85,
        'confidence': 0.92,
        'breakdown': {
            'positive': 0.85,
            'neutral': 0.10,
            'negative': 0.05
        }
    }
    
    success = adapter.save_sentiment_analysis(
        date=today,
        ticker='TSLA',
        sentiment=sentiment,
        expiry_days=7
    )
    print(f"βœ“ Saved: {success}")
    
    # Retrieve news articles
    print("\nπŸ“‹ Retrieving TSLA news articles...")
    articles = adapter.get_news_articles('TSLA')
    print(f"Found {len(articles)} articles")
    
    for article in articles:
        print(f"  Title: {article.data.get('title')}")
        print(f"  Source: {article.data.get('source')}")


def example_technical_analysis():
    """Example: Save and retrieve technical analysis"""
    print("\n" + "="*60)
    print("EXAMPLE 4: Technical Analysis Integration")
    print("="*60)
    
    adapter = TechnicalAnalysisAdapter()
    today = datetime.now().date().isoformat()
    
    # Save technical indicators
    print("\nπŸ“‰ Saving technical indicators for NVDA...")
    indicators = {
        'rsi': 65.5,
        'macd': 12.3,
        'macd_signal': 10.8,
        'sma_50': 450.25,
        'sma_200': 420.80,
        'bollinger_upper': 480.00,
        'bollinger_lower': 430.00,
        'volume': 45000000
    }
    
    success = adapter.save_technical_indicators(
        date=today,
        ticker='NVDA',
        indicators=indicators,
        expiry_days=1
    )
    print(f"βœ“ Saved: {success}")
    
    # Save trading signal
    print("\n🚦 Saving trading signal for NVDA...")
    signal = {
        'signal_type': 'BUY',
        'strength': 0.75,
        'triggers': ['RSI oversold', 'MACD crossover'],
        'entry_price': 455.00,
        'stop_loss': 440.00,
        'take_profit': 480.00
    }
    
    success = adapter.save_trading_signal(
        date=today,
        ticker='NVDA',
        signal=signal,
        expiry_days=1
    )
    print(f"βœ“ Saved: {success}")
    
    # Retrieve technical indicators
    print("\nπŸ“Š Retrieving NVDA technical indicators...")
    indicators_list = adapter.get_technical_indicators('NVDA')
    print(f"Found {len(indicators_list)} indicator sets")
    
    for ind in indicators_list:
        print(f"  RSI: {ind.data.get('rsi')}")
        print(f"  MACD: {ind.data.get('macd')}")


def example_batch_operations():
    """Example: Batch save operations"""
    print("\n" + "="*60)
    print("EXAMPLE 5: Batch Operations")
    print("="*60)
    
    db = LocalDatabase()
    today = datetime.now().date().isoformat()
    
    # Create multiple entries
    print("\nπŸ’Ύ Batch saving multiple stock analyses...")
    entries = []
    
    tickers = ['AAPL', 'GOOGL', 'MSFT', 'AMZN', 'NVDA']
    
    for ticker in tickers:
        entry = DatabaseEntry(
            date=today,
            data_type=DataType.FINANCIAL_INFO.value,
            ticker=ticker,
            data={
                'analysis_type': 'quick_scan',
                'price': 100.0 + len(ticker),  # Dummy data
                'volume': 1000000 * len(ticker)
            },
            metadata={'batch_id': 'scan_001'}
        )
        entries.append(entry)
    
    count = db.save_batch(entries, expiry_days=1)
    print(f"βœ“ Saved {count}/{len(entries)} entries")


def example_query_operations():
    """Example: Advanced queries"""
    print("\n" + "="*60)
    print("EXAMPLE 6: Query Operations")
    print("="*60)
    
    db = LocalDatabase()
    
    # Query by date range
    print("\nπŸ” Querying all financial data from last 7 days...")
    date_from = (datetime.now() - timedelta(days=7)).date().isoformat()
    
    entries = db.query(
        data_type=DataType.FINANCIAL_INFO.value,
        date_from=date_from,
        limit=10
    )
    
    print(f"Found {len(entries)} entries:")
    for entry in entries[:5]:  # Show first 5
        print(f"  {entry.date} - {entry.ticker} - {entry.data.get('analysis_type', 'N/A')}")
    
    # Query specific ticker
    print("\nπŸ” Querying all data for AAPL...")
    aapl_entries = db.query(ticker='AAPL', limit=5)
    print(f"Found {len(aapl_entries)} AAPL entries")


def example_database_stats():
    """Example: Database statistics"""
    print("\n" + "="*60)
    print("EXAMPLE 7: Database Statistics")
    print("="*60)
    
    db = LocalDatabase()
    stats = db.get_stats()
    
    print(f"\nπŸ“Š Database Overview:")
    print(f"  Total Entries: {stats.get('total_entries', 0):,}")
    print(f"  Total Size: {stats.get('total_size_mb', 0)} MB")
    print(f"  Expired Entries: {stats.get('expired_entries', 0)}")
    
    by_type = stats.get('by_type', {})
    if by_type:
        print(f"\nπŸ“ By Data Type:")
        for data_type, count in by_type.items():
            print(f"  {data_type}: {count:,}")


def example_integration_workflow():
    """Example: Complete workflow combining all modules"""
    print("\n" + "="*60)
    print("EXAMPLE 8: Complete Integration Workflow")
    print("="*60)
    
    ticker = 'AAPL'
    today = datetime.now().date().isoformat()
    
    # 1. Check calendar for upcoming events
    print(f"\n1️⃣ Checking calendar for {ticker}...")
    calendar_adapter = CalendarAdapter()
    earnings = calendar_adapter.get_earnings_events(ticker)
    print(f"   Found {len(earnings)} upcoming earnings events")
    
    # 2. Save fundamental analysis
    print(f"\n2️⃣ Saving fundamental analysis for {ticker}...")
    fundamental_adapter = FundamentalAdapter()
    
    decision = {
        'recommendation': 'HOLD',
        'final_score': 0.31,
        'confidence': 0.85,
        'reasoning': ['Strong ROIC but low FCF yield'],
        'key_metrics': {'roic': 73.8, 'fcf_yield': 2.36}
    }
    
    fundamental_adapter.save_investment_decision(today, ticker, decision)
    print("   βœ“ Decision saved")
    
    # 3. Check news sentiment
    print(f"\n3️⃣ Saving news sentiment for {ticker}...")
    news_adapter = NewsAdapter()
    
    sentiment = {
        'model': 'finbert-tone',
        'sentiment': 'neutral',
        'score': 0.55
    }
    
    news_adapter.save_sentiment_analysis(today, ticker, sentiment)
    print("   βœ“ Sentiment saved")
    
    # 4. Save technical signal
    print(f"\n4️⃣ Saving technical signal for {ticker}...")
    technical_adapter = TechnicalAnalysisAdapter()
    
    signal = {
        'signal_type': 'HOLD',
        'strength': 0.60,
        'triggers': ['Neutral RSI', 'No clear pattern']
    }
    
    technical_adapter.save_trading_signal(today, ticker, signal)
    print("   βœ“ Signal saved")
    
    # 5. Comprehensive analysis
    print(f"\n5️⃣ Retrieving comprehensive analysis for {ticker}...")
    db = LocalDatabase()
    all_data = db.query(ticker=ticker, date_from=today)
    
    print(f"\nπŸ“Š Complete {ticker} Analysis ({today}):")
    print(f"   Total data points: {len(all_data)}")
    
    for entry in all_data:
        data_type = entry.data_type
        if data_type == 'financial_info':
            rec = entry.data.get('recommendation', 'N/A')
            print(f"   πŸ’° Fundamental: {rec}")
        elif data_type == 'news':
            sent = entry.data.get('sentiment', 'N/A')
            print(f"   πŸ“° News Sentiment: {sent}")
        elif data_type == 'technical_analysis':
            sig = entry.data.get('signal_type', 'N/A')
            print(f"   πŸ“‰ Technical Signal: {sig}")


def run_all_examples():
    """Run all examples"""
    print("\n" + "="*60)
    print("LOCAL DATABASE SYSTEM - EXAMPLE USAGE")
    print("="*60)
    
    try:
        example_calendar_scraper()
        example_fundamental_analysis()
        example_news_scraper()
        example_technical_analysis()
        example_batch_operations()
        example_query_operations()
        example_database_stats()
        example_integration_workflow()
        
        print("\n" + "="*60)
        print("βœ“ All examples completed successfully!")
        print("="*60 + "\n")
        
    except Exception as e:
        print(f"\n❌ Error running examples: {e}")
        import traceback
        traceback.print_exc()


if __name__ == "__main__":
    run_all_examples()