File size: 24,640 Bytes
3fe0726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
"""
Stock Metrics Calculator
Combines all individual metric functions and fetches data from yfinance
Returns comprehensive DataFrame with all calculated metrics
"""

import yfinance as yf
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Tuple
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')

# Import all metric calculation functions
from fundamental_analysis.metrics import *


class StockMetricsCalculator:
    """Calculate comprehensive metrics for a single stock"""
    
    def __init__(self, ticker: str):
        """
        Initialize calculator for a ticker
        
        Args:
            ticker: Stock ticker symbol (e.g., 'AAPL')
        """
        self.ticker = ticker.upper()
        self.stock = yf.Ticker(self.ticker)
        self.data_fetched = False
        self.missing_metrics = []
        
        # Raw data containers
        self.info = {}
        self.financials = {}
        self.balance_sheet = {}
        self.cashflow = {}
        self.quarterly_financials = {}
        self.quarterly_balance = {}
        self.quarterly_cashflow = {}
        
    def fetch_data(self) -> bool:
        """
        Fetch all available data from yfinance
        
        Returns:
            True if successful, False otherwise
        """
        try:
            # Get company info
            self.info = self.stock.info
            
            # Get financial statements
            self.financials = self.stock.financials
            self.balance_sheet = self.stock.balance_sheet
            self.cashflow = self.stock.cashflow
            
            # Get quarterly statements
            self.quarterly_financials = self.stock.quarterly_financials
            self.quarterly_balance = self.stock.quarterly_balance_sheet
            self.quarterly_cashflow = self.stock.quarterly_cashflow
            
            self.data_fetched = True
            print(f"✓ Data fetched successfully for {self.ticker}")
            return True
            
        except Exception as e:
            print(f"✗ Error fetching data for {self.ticker}: {str(e)}")
            return False
    
    def _get_from_statement(self, statement: pd.DataFrame, key: str, period: int = 0) -> Optional[float]:
        """
        Safely get value from financial statement
        
        Args:
            statement: DataFrame from yfinance
            key: Row name to extract
            period: Column index (0 = most recent)
        
        Returns:
            Value or None if not found
        """
        try:
            if statement.empty:
                return None
            if key in statement.index:
                values = statement.loc[key]
                if not values.empty and period < len(values):
                    val = values.iloc[period]
                    return float(val) if pd.notna(val) else None
            return None
        except:
            return None
    
    def _calculate_ttm(self, quarterly_statement: pd.DataFrame, key: str) -> Optional[float]:
        """Calculate TTM (Trailing Twelve Months) from quarterly data"""
        try:
            if quarterly_statement.empty or key not in quarterly_statement.index:
                return None
            values = quarterly_statement.loc[key].iloc[:4]  # Last 4 quarters
            values = values.replace({"-": None})
            values = values.dropna()
            if len(values) == 4 and values.notna().all():
                return float(values.sum())
            return None
        except:
            return None
    
    def calculate_all_metrics(self) -> pd.DataFrame:
        """
        Calculate all available metrics
        
        Returns:
            DataFrame with metric names, values, formulas, and status
        """
        if not self.data_fetched:
            self.fetch_data()
        
        metrics_data = []
        
        # ============================================================================
        # EXTRACT RAW DATA
        # ============================================================================
        
        print("\nExtracting raw financial data...")
        
        # Price and shares
        price = self.info.get('currentPrice') or self.info.get('regularMarketPrice')
        diluted_shares = self.info.get('sharesOutstanding')
        
        # Income statement (use TTM when available)
        revenue = self._calculate_ttm(self.quarterly_financials, 'Total Revenue') or \
                  self._get_from_statement(self.financials, 'Total Revenue')
        revenue_prior = self._get_from_statement(self.financials, 'Total Revenue', 1)
        
        cogs = self._calculate_ttm(self.quarterly_financials, 'Cost Of Revenue') or \
               self._get_from_statement(self.financials, 'Cost Of Revenue')
        
        gross_profit = self._calculate_ttm(self.quarterly_financials, 'Gross Profit') or \
                       self._get_from_statement(self.financials, 'Gross Profit')
        
        ebit = self._calculate_ttm(self.quarterly_financials, 'EBIT') or \
               self._get_from_statement(self.financials, 'EBIT')
        
        ebitda = self.info.get('ebitda') or \
                 self._calculate_ttm(self.quarterly_financials, 'EBITDA') or \
                 self._get_from_statement(self.financials, 'EBITDA')
        
        net_income = self._calculate_ttm(self.quarterly_financials, 'Net Income') or \
                     self._get_from_statement(self.financials, 'Net Income')
        net_income_prior = self._get_from_statement(self.financials, 'Net Income', 1)
        
        interest_expense = abs(self._calculate_ttm(self.quarterly_financials, 'Interest Expense') or \
                              self._get_from_statement(self.financials, 'Interest Expense') or 0)
        
        # EPS
        eps_ttm = self.info.get('trailingEps')
        eps_forward = self.info.get('forwardEps')
        eps_prior = self.info.get('trailingEps')  # Would need historical data for accurate prior
        
        # Balance sheet
        total_assets = self._get_from_statement(self.balance_sheet, 'Total Assets')
        current_assets = self._get_from_statement(self.balance_sheet, 'Current Assets')
        current_liabilities = self._get_from_statement(self.balance_sheet, 'Current Liabilities')
        
        total_debt = self.info.get('totalDebt') or \
                    (self._get_from_statement(self.balance_sheet, 'Long Term Debt') or 0) + \
                    (self._get_from_statement(self.balance_sheet, 'Short Term Debt') or 0)
        
        cash = self._get_from_statement(self.balance_sheet, 'Cash And Cash Equivalents') or 0
        cash_and_st_investments = self._get_from_statement(self.balance_sheet, 'Cash Cash Equivalents And Short Term Investments') or cash
        
        total_equity = self._get_from_statement(self.balance_sheet, 'Total Equity Gross Minority Interest') or \
                      self._get_from_statement(self.balance_sheet, 'Stockholders Equity')
        total_equity_prior = self._get_from_statement(self.balance_sheet, 'Stockholders Equity', 1)
        
        receivables = self._get_from_statement(self.balance_sheet, 'Receivables') or 0
        inventory = self._get_from_statement(self.balance_sheet, 'Inventory') or 0
        
        book_value_per_share = self.info.get('bookValue')
        
        # Cash flow
        cfo = self._calculate_ttm(self.quarterly_cashflow, 'Operating Cash Flow') or \
              self._get_from_statement(self.cashflow, 'Operating Cash Flow')
        
        capex = abs(self._calculate_ttm(self.quarterly_cashflow, 'Capital Expenditure') or \
                   self._get_from_statement(self.cashflow, 'Capital Expenditure') or 0)
        
        dividends_paid = abs(self._get_from_statement(self.cashflow, 'Cash Dividends Paid') or 0)
        stock_repurchased = abs(self._get_from_statement(self.cashflow, 'Repurchase Of Capital Stock') or 0)
        
        # Tax rate
        tax_rate = self.info.get('effectiveTaxRate') or 0.21  # Default to 21% if not available
        
        # Growth rates
        earnings_growth = self.info.get('earningsGrowth') or 0
        revenue_growth_rate = self.info.get('revenueGrowth') or 0
        
        # ============================================================================
        # CALCULATE DERIVED VALUES
        # ============================================================================
        
        # Market cap and EV
        market_cap = calculate_market_cap(price, diluted_shares) if (price and diluted_shares) else self.info.get('marketCap')
        enterprise_value = calculate_enterprise_value(market_cap, total_debt, cash) if market_cap else self.info.get('enterpriseValue')
        
        # Free cash flow
        free_cash_flow = calculate_free_cash_flow(cfo, capex) if cfo else None
        
        # Averages for ratio calculations
        avg_equity = calculate_average(total_equity, total_equity_prior) if (total_equity and total_equity_prior) else total_equity
        
        # Invested capital
        invested_capital = calculate_invested_capital(total_equity, total_debt, cash) if (total_equity and total_debt) else None
        
        # ============================================================================
        # CALCULATE ALL METRICS
        # ============================================================================
        
        print("Calculating metrics...")
        
        # --- 1. VALUATION METRICS ---
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'Market Capitalization',
            'Value': market_cap,
            'Formula': 'Price × Diluted Shares',
            'Status': 'Available' if market_cap else 'Missing'
        })
        
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'Enterprise Value (EV)',
            'Value': enterprise_value,
            'Formula': 'Market Cap + Total Debt - Cash',
            'Status': 'Available' if enterprise_value else 'Missing'
        })
        
        pe_ratio = calculate_pe_ratio(price, eps_ttm)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'P/E Ratio (TTM)',
            'Value': pe_ratio,
            'Formula': 'Price / EPS',
            'Status': 'Available' if pe_ratio else 'Missing',
            'Threshold': '< sector median = undervalued'
        })
        
        pe_forward = calculate_pe_ratio(price, eps_forward)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'P/E Ratio (Forward)',
            'Value': pe_forward,
            'Formula': 'Price / Forward EPS',
            'Status': 'Available' if pe_forward else 'Missing',
            'Threshold': 'Use for valuation comparisons'
        })
        
        peg_ratio = calculate_peg_ratio(pe_forward or pe_ratio, earnings_growth)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'PEG Ratio',
            'Value': peg_ratio,
            'Formula': 'P/E / (EPS Growth % × 100)',
            'Status': 'Available' if peg_ratio else 'Missing',
            'Threshold': '< 0.8 = BUY, 0.8-1.2 = HOLD, > 1.5 = SELL'
        })
        
        ev_ebitda = calculate_ev_ebitda(enterprise_value, ebitda)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'EV/EBITDA',
            'Value': ev_ebitda,
            'Formula': 'Enterprise Value / EBITDA',
            'Status': 'Available' if ev_ebitda else 'Missing',
            'Threshold': 'Compare to sector median'
        })
        
        price_to_fcf = calculate_price_to_fcf(market_cap, free_cash_flow)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'Price / FCF',
            'Value': price_to_fcf,
            'Formula': 'Market Cap / Free Cash Flow',
            'Status': 'Available' if price_to_fcf else 'Missing'
        })
        
        fcf_yield_eq = calculate_fcf_yield_equity(free_cash_flow, market_cap)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'FCF Yield (Equity) %',
            'Value': fcf_yield_eq,
            'Formula': '(FCF / Market Cap) × 100',
            'Status': 'Available' if fcf_yield_eq else 'Missing',
            'Threshold': '> 6% = BUY, 4-6% = HOLD, < 3% = SELL',
            'Priority': 'HIGHEST'
        })
        
        fcf_yield_ev = calculate_fcf_yield_enterprise(free_cash_flow, enterprise_value)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'FCF Yield (Enterprise) %',
            'Value': fcf_yield_ev,
            'Formula': '(FCF / EV) × 100',
            'Status': 'Available' if fcf_yield_ev else 'Missing',
            'Threshold': '> 6% = BUY (preferred metric)',
            'Priority': 'HIGHEST'
        })
        
        pb_ratio = calculate_price_to_book(price, book_value_per_share)
        metrics_data.append({
            'Category': 'Valuation',
            'Metric': 'Price / Book',
            'Value': pb_ratio,
            'Formula': 'Price / Book Value per Share',
            'Status': 'Available' if pb_ratio else 'Missing'
        })
        
        # --- 2. PROFITABILITY & MARGINS ---
        gross_margin = calculate_gross_margin(revenue, cogs)
        metrics_data.append({
            'Category': 'Profitability',
            'Metric': 'Gross Margin %',
            'Value': gross_margin,
            'Formula': '((Revenue - COGS) / Revenue) × 100',
            'Status': 'Available' if gross_margin else 'Missing',
            'Threshold': '> 40% good, > 60% excellent'
        })
        
        ebitda_margin = calculate_ebitda_margin(ebitda, revenue)
        metrics_data.append({
            'Category': 'Profitability',
            'Metric': 'EBITDA Margin %',
            'Value': ebitda_margin,
            'Formula': '(EBITDA / Revenue) × 100',
            'Status': 'Available' if ebitda_margin else 'Missing',
            'Threshold': '> 20% excellent'
        })
        
        ebit_margin = calculate_ebit_margin(ebit, revenue)
        metrics_data.append({
            'Category': 'Profitability',
            'Metric': 'EBIT Margin %',
            'Value': ebit_margin,
            'Formula': '(EBIT / Revenue) × 100',
            'Status': 'Available' if ebit_margin else 'Missing'
        })
        
        net_margin = calculate_net_margin(net_income, revenue)
        metrics_data.append({
            'Category': 'Profitability',
            'Metric': 'Net Margin %',
            'Value': net_margin,
            'Formula': '(Net Income / Revenue) × 100',
            'Status': 'Available' if net_margin else 'Missing',
            'Threshold': '> 10% good'
        })
        
        # --- 3. CASH FLOW METRICS ---
        metrics_data.append({
            'Category': 'Cash Flow',
            'Metric': 'Free Cash Flow',
            'Value': free_cash_flow,
            'Formula': 'CFO - CapEx',
            'Status': 'Available' if free_cash_flow else 'Missing',
            'Threshold': 'Must be positive',
            'Priority': 'CRITICAL'
        })
        
        fcf_per_share = calculate_fcf_per_share(free_cash_flow, diluted_shares)
        metrics_data.append({
            'Category': 'Cash Flow',
            'Metric': 'FCF per Share',
            'Value': fcf_per_share,
            'Formula': 'FCF / Diluted Shares',
            'Status': 'Available' if fcf_per_share else 'Missing'
        })
        
        cash_conversion = calculate_cash_conversion(cfo, net_income)
        metrics_data.append({
            'Category': 'Cash Flow',
            'Metric': 'Cash Conversion Ratio',
            'Value': cash_conversion,
            'Formula': 'CFO / Net Income',
            'Status': 'Available' if cash_conversion else 'Missing',
            'Threshold': '> 1.0 = quality earnings, < 1.0 RED FLAG',
            'Priority': 'HIGH'
        })
        
        # --- 4. LIQUIDITY & SOLVENCY ---
        current_ratio = calculate_current_ratio(current_assets, current_liabilities)
        metrics_data.append({
            'Category': 'Liquidity',
            'Metric': 'Current Ratio',
            'Value': current_ratio,
            'Formula': 'Current Assets / Current Liabilities',
            'Status': 'Available' if current_ratio else 'Missing',
            'Threshold': '> 1.5 good'
        })
        
        quick_ratio = calculate_quick_ratio(cash, 0, receivables, current_liabilities)
        metrics_data.append({
            'Category': 'Liquidity',
            'Metric': 'Quick Ratio',
            'Value': quick_ratio,
            'Formula': '(Cash + Receivables) / Current Liabilities',
            'Status': 'Available' if quick_ratio else 'Missing'
        })
        
        net_debt_ebitda = calculate_net_debt_to_ebitda(total_debt, cash, ebitda)
        metrics_data.append({
            'Category': 'Solvency',
            'Metric': 'Net Debt / EBITDA',
            'Value': net_debt_ebitda,
            'Formula': '(Total Debt - Cash) / EBITDA',
            'Status': 'Available' if net_debt_ebitda else 'Missing',
            'Threshold': '< 1 = Low risk, 1-3 = Moderate, > 3 = High risk',
            'Priority': 'HIGH'
        })
        
        interest_cov = calculate_interest_coverage(ebit, interest_expense)
        metrics_data.append({
            'Category': 'Solvency',
            'Metric': 'Interest Coverage',
            'Value': interest_cov,
            'Formula': 'EBIT / Interest Expense',
            'Status': 'Available' if interest_cov else 'Missing',
            'Threshold': '> 3x safe, < 2x risky'
        })
        
        debt_to_equity = calculate_debt_to_equity(total_debt, total_equity)
        metrics_data.append({
            'Category': 'Solvency',
            'Metric': 'Debt / Equity',
            'Value': debt_to_equity,
            'Formula': 'Total Debt / Total Equity',
            'Status': 'Available' if debt_to_equity else 'Missing'
        })
        
        # --- 5. RETURNS & EFFICIENCY ---
        roe = calculate_roe(net_income, avg_equity)
        metrics_data.append({
            'Category': 'Returns',
            'Metric': 'Return on Equity (ROE) %',
            'Value': roe,
            'Formula': '(Net Income / Avg Equity) × 100',
            'Status': 'Available' if roe else 'Missing',
            'Threshold': '> 15% good, > 20% excellent',
            'Priority': 'VERY HIGH'
        })
        
        roa = calculate_roa(net_income, total_assets)
        metrics_data.append({
            'Category': 'Returns',
            'Metric': 'Return on Assets (ROA) %',
            'Value': roa,
            'Formula': '(Net Income / Total Assets) × 100',
            'Status': 'Available' if roa else 'Missing'
        })
        
        roic = calculate_roic(ebit, tax_rate, invested_capital)
        metrics_data.append({
            'Category': 'Returns',
            'Metric': 'Return on Invested Capital (ROIC) %',
            'Value': roic,
            'Formula': '(EBIT × (1 - Tax Rate) / Invested Capital) × 100',
            'Status': 'Available' if roic else 'Missing',
            'Threshold': '> 10% good, > 15% excellent',
            'Priority': 'VERY HIGH - Best quality indicator'
        })
        
        # --- 6. GROWTH METRICS ---
        rev_growth = calculate_revenue_growth(revenue, revenue_prior)
        metrics_data.append({
            'Category': 'Growth',
            'Metric': 'Revenue Growth (YoY) %',
            'Value': rev_growth or (revenue_growth_rate * 100),
            'Formula': '((Current Rev - Prior Rev) / Prior Rev) × 100',
            'Status': 'Available' if (rev_growth or revenue_growth_rate) else 'Missing',
            'Threshold': '> 10% good, > 20% excellent'
        })
        
        eps_growth_calc = calculate_eps_growth(eps_ttm, eps_prior)
        metrics_data.append({
            'Category': 'Growth',
            'Metric': 'EPS Growth (YoY) %',
            'Value': eps_growth_calc or (earnings_growth * 100),
            'Formula': '((Current EPS - Prior EPS) / Prior EPS) × 100',
            'Status': 'Available' if (eps_growth_calc or earnings_growth) else 'Missing',
            'Priority': 'HIGH'
        })
        
        # --- 7. CAPITAL ALLOCATION ---
        payout_ratio = calculate_payout_ratio(dividends_paid, net_income)
        metrics_data.append({
            'Category': 'Capital Allocation',
            'Metric': 'Payout Ratio %',
            'Value': payout_ratio,
            'Formula': '(Dividends / Net Income) × 100',
            'Status': 'Available' if payout_ratio else 'Missing',
            'Threshold': '< 60% sustainable'
        })
        
        buyback_yield = calculate_buyback_yield(stock_repurchased, market_cap)
        metrics_data.append({
            'Category': 'Capital Allocation',
            'Metric': 'Buyback Yield %',
            'Value': buyback_yield,
            'Formula': '(Buyback Cash / Market Cap) × 100',
            'Status': 'Available' if buyback_yield else 'Missing'
        })
        
        total_payout = calculate_total_payout_ratio(dividends_paid, stock_repurchased, net_income)
        metrics_data.append({
            'Category': 'Capital Allocation',
            'Metric': 'Total Payout Ratio %',
            'Value': total_payout,
            'Formula': '((Dividends + Buybacks) / Net Income) × 100',
            'Status': 'Available' if total_payout else 'Missing'
        })
        
        # Create DataFrame
        df = pd.DataFrame(metrics_data)
        
        # Track missing metrics
        self.missing_metrics = df[df['Status'] == 'Missing']['Metric'].tolist()
        
        print(f"\n✓ Calculated {len(df)} metrics")
        print(f"✓ Available: {len(df[df['Status'] == 'Available'])}")
        print(f"✗ Missing: {len(self.missing_metrics)}")
        
        return df
    
    def get_summary_statistics(self, df: pd.DataFrame) -> Dict:
        """Generate summary statistics about the metrics"""
        total = len(df)
        available = len(df[df['Status'] == 'Available'])
        missing = total - available
        
        return {
            'ticker': self.ticker,
            'total_metrics': total,
            'available_metrics': available,
            'missing_metrics': missing,
            'coverage_percentage': (available / total) * 100 if total > 0 else 0,
            'missing_metric_list': self.missing_metrics
        }


def calculate_metrics_for_ticker(ticker: str) -> Tuple[pd.DataFrame, Dict]:
    """
    Main function to calculate all metrics for a ticker
    
    Args:
        ticker: Stock ticker symbol
    
    Returns:
        Tuple of (metrics_dataframe, summary_statistics)
    """
    calculator = StockMetricsCalculator(ticker)
    
    if not calculator.fetch_data():
        return pd.DataFrame(), {}
        
    
    metrics_df = calculator.calculate_all_metrics()
    summary = calculator.get_summary_statistics(metrics_df)
    
    return metrics_df, summary


if __name__ == "__main__":
    # Test with a sample ticker
    test_ticker = "AAPL"
    print(f"Testing with {test_ticker}...")
    print("=" * 80)
    
    metrics_df, summary = calculate_metrics_for_ticker(test_ticker)
    
    if not metrics_df.empty:
        print("\n" + "=" * 80)
        print("SUMMARY STATISTICS")
        print("=" * 80)
        for key, value in summary.items():
            if key != 'missing_metric_list':
                print(f"{key}: {value}")
        
        print("\n" + "=" * 80)
        print("SAMPLE METRICS (First 10)")
        print("=" * 80)
        print(metrics_df[['Category', 'Metric', 'Value', 'Status']].head(10).to_string(index=False))
        
        print("\n" + "=" * 80)
        print("HIGH PRIORITY METRICS")
        print("=" * 80)
        priority_metrics = metrics_df[metrics_df['Priority'].notna()][['Metric', 'Value', 'Threshold', 'Priority']]
        print(priority_metrics.to_string(index=False))
        
        if summary['missing_metrics'] > 0:
            print("\n" + "=" * 80)
            print("MISSING METRICS")
            print("=" * 80)
            for metric in summary['missing_metric_list']:
                print(f"  - {metric}")
        
        # Save to CSV
        output_file = f"{test_ticker}_metrics.csv"
        metrics_df.to_csv(output_file, index=False)
        print(f"\n✓ Metrics saved to {output_file}")